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large class of linear b-gauges for which they hold rigorously. In these gauges the propagator

has a non-anomalous Schwinger representation and builds Riemann surfaces by adding

strip-like domains. Projector-based gauges, like Schnabl’s, are not in this class of gauges

but we construct a family of regular linear b-gauges which interpolate between Siegel gauge
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1. Introduction and summary

Since the discovery of interacting open bosonic string field theory [1], much work has

been devoted to understanding the Feynman rules of the theory and deriving the Polyakov

amplitudes using these Feynman rules [2 – 5]. Most of these studies have been carried out in

the Siegel gauge [6]. More recently, Schnabl’s discovery [7] of an analytic classical solution

in string field theory in a different gauge has inspired a large amount of work on open

string field theory in Schnabl gauge and closely related gauges. Most of these studies focus

on finding classical solutions of open string field theory and/or studying various properties

of these solutions [8 – 29].
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There has also been some progress towards obtaining the Feynman rules of string field

theory in this new class of gauges and computing off-shell amplitudes [30, 31] (see also [32]).

The off-shell Veneziano amplitude in Schnabl gauge was obtained in [31], completing the

work of [30]. There was a surprise. The amplitude receives contributions from terms whose

Siegel gauge analogs would vanish. These contributions require delicate regularization of

the propagator which makes the construction of general tree amplitudes quite nontrivial.

Motivated by this puzzle in this paper we carry out a systematic study of string pertur-

bation theory in a wide class of gauges which we shall call ‘linear b-gauges’. These gauges

include both Siegel gauge and Schnabl gauge as special cases. Other special cases of such

gauges have been studied previously in [33].

Our analysis demystifies some of the results found in [31]. We find that the delicate

contributions which arise at tree level occur because the propagator fails to move the

open string midpoint. Moreover, we show that what has so far been called the Schnabl-

gauge propagator is the correct propagator only at the string tree level. For string loop

diagrams we need to include string fields of all ghost numbers [4, 5], and the propagator

takes different form in different ghost-number sectors. This is a general feature of linear

b-gauges. Even after taking this effect into account the proof of consistency of Feynman

amplitudes is complicated in Schnabl gauge, again because the propagator does not move

the open string midpoint. Motivated by this observation we derive a set of conditions

which guarantee that a linear b-gauge defines a consistent perturbation theory. This is one

of our main results. Schnabl gauge fails to satisfy these conditions.1 During the course of

our analysis we obtain an interesting and explicit Riemann surface interpretation of the

propagator for general linear b-gauges. We also construct a family of regular linear b-gauges

which interpolate between Schnabl gauge and Siegel gauge.

We shall now summarize the main results of the paper. As is well known, a general

quantum string field |ψ〉 is described by a state in the first quantized open string state

space with arbitrary ghost number. After suitable gauge fixing the action takes the form:

S = −
[
1

2
〈ψ|Q|ψ〉 +

go

3
〈ψ|ψ ∗ ψ〉

]
. (1.1)

Here Q denotes the BRST operator, ∗ denotes star product, and go is the open string

coupling constant. This form of the action may be obtained either by starting with the

classical string field theory (which has the same action but |ψ〉 restricted to ghost-number

one) and going through the Fadeev-Popov procedure or by using the Batalin-Vilkovisky

formalism. We choose the gauge condition on the ghost-number g string field |ψ(g)〉 as

B(g)|ψ(g)〉 = 0 , (1.2)

where B(g) is a linear combination of the oscillators bn that can be encoded in a vector

1Since our conditions are sufficient but not necessary for a gauge choice to be valid, the failure of the

Schnabl gauge to satisfy our condition does not immediately rule it out as a valid gauge choice. It shows,

however, that establishing consistency of string perturbation theory in Schnabl gauge is a much more

difficult task.
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field v(ξ):2

B(g) ≡
∑

n∈Z

vnbn =

∮
dξ

2πi
v(ξ)b(ξ) , with v(ξ) =

∑

n∈Z

vnξ
n+1 . (1.3)

For each ghost-number g we need a vector field to define the operator B(g). We find that

the consistency of gauge fixing requires us to choose

B(3−g) = B⋆
(g) , (1.4)

where B⋆
(g) denotes the BPZ conjugate of B(g). We shall refer to this as a linear b-gauge.

Siegel gauge corresponds to the choice B(g) = b0 for all g. In Schnabl gauge we have

B(1) = B ≡ b0 + 2
∞∑

k=1

(−1)k+1

4k2 − 1
b2k , v(ξ) = (1 + ξ2) tan−1 ξ . (1.5)

For a general linear b-gauge B(g) is not invariant under BPZ conjugation and eq. (1.4)

prevents us from choosing the same gauge condition on all ghost sectors. In particular,

Schnabl’s B(1) is not BPZ invariant and cannot be used for all ghost numbers. One must

have B(2) = B⋆
(1) 6= B(1). A natural possibility consistent with (1.4) is to take

B(g) =

{
B for g odd,

B⋆ for g even.
(1.6)

Both Siegel gauge and Schnabl gauge are examples in which B(g), for a given g, is a linear

combination of bn modes with n ≥ 0 or with n ≤ 0. We will also be able to handle the

case of linear combinations of bn modes with both positive and negative n.

It is useful to assemble all the B(g) operators into a single operator B defined by

B =
∑

g

B(g)Πg , (1.7)

where Πg is the projector onto ghost-number g states. Acting on a ghost-number g state

we have B = B(g), and the gauge-fixing condition (1.2) becomes

B|ψ〉 = 0 . (1.8)

There are some possible subtleties in defining and manipulating the propagators in a

general linear b-gauge, just like in the case of Schnabl gauge [31]. We shall first ignore these

subtleties and summarize our results in formal terms and then describe how we address

these subtleties. In order to calculate the propagator in the gauge (1.8) we introduce ghost-

number g sources |J(g)〉, add to the free string field theory action −1
2

∑
g〈ψ(g)|Q|ψ(2−g)〉

2At this point we regard the vector field v(ξ) as a formal Laurent series in ξ. Later we will demand that

this Laurent series defines an analytic function in some neighborhood of the unit circle |ξ| = 1.
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the source term
∑

g〈ψ(g)|J(3−g)〉, and eliminate |ψ(g)〉 by its linearized equation of motion

in the gauge (1.2). The result is 1
2

∑
g〈J(4−g)|P|J(g)〉, with the full propagator P given by

P =
∑

g

P(g)Πg , with P(g) =
B(g−1)

L(g−1)
Q

B(g)

L(g)
, and L(g) ≡ {Q,B(g)} . (1.9)

Note that at each ghost number the propagator involves the gauge-fixing operators B(g) of

two ghost numbers. Using (1.9) one can prove the fundamental property

{Q,P} = 1 . (1.10)

We will show that eq. (1.10) guarantees the decoupling of trivial states from on-shell scat-

tering amplitudes. Moreover, it ensures that the b-gauge propagator P gives the same

on-shell amplitudes as the familiar Siegel gauge propagator P = b0/L0. The steps which

lead to this conclusion are straightforward. Since we also have {Q,P} = 1, it follows that

the difference of propagators ∆P = P −P is annihilated by Q, ı.e. {Q,∆P} = 0. We find

that ∆P is in fact a BRST commutator:

∆P = [Q,Ω] , (1.11)

for some operator Ω. As a result, given any amplitude in the linear b-gauge, we can replace

each propagator P by P + [Q,Ω]. We show that the contribution from the [Q,Ω] piece

vanishes for on-shell amplitudes after summing over Feynman diagrams. The proof involves

the same kind of cancelations which prove that pure-gauge states decouple from on-shell

amplitudes in Siegel gauge. The combinatoric factors are somewhat different but they work

out correctly.

As anticipated above, not all linear b-gauges are consistent gauge choices. To begin

our analysis we make the natural assumption that string field theory Feynman diagrams

must have a representation as correlators on Riemann surfaces. The propagator will not

permit this representation unless the operators L(g) generate conformal transformations of

open string theory. This implies that the vector field v(ξ) associated with B(g) must satisfy

v(ξ) = v(ξ̄). We will also see that compatibility with the reality condition on the string field

requires vector fields v(ξ) which are even or odd under ξ → −ξ. Thus a gauge choice which

allows real string fields in the gauge slice and which permits a geometric interpretation of

L(g) requires

v(ξ) = v(ξ̄) , v(−ξ) = ±v(ξ) . (1.12)

A rigorous proof of (1.10) gives further constraints. The main obstruction comes from

the subtleties in defining the operators 1/L(g) which appear in the propagator (1.9). We of

course do not expect L(g) to be invertible in the full space of open string states. First of all it

has zero eigenvalues when acting on on-shell states – representatives of BRST cohomology

which satisfy the gauge condition. It may also have additional zeroes acting on BRST

trivial states satisfying the gauge condition if there are residual gauge symmetries. These

are familiar situations which occur even in conventional field theories, and give rise to

poles in the propagator at special values of the momentum. What one requires is that L(g)
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should have a well defined inverse acting on states of generic momentum. In particular if we

restrict the momentum to the deep Euclidean region (more precisely in the region k2 > 1 so

that we avoid the tachyon pole) then the inverse of L(g) should be unambiguously defined.

In open string perturbation theory the operator 1/L(g) appears in the calculation of

the string amplitudes. In all linear b-gauges that we consider, amplitudes have a geometric

interpretation in terms of Riemann surfaces. We shall see that the requirement on L(g)

described in the previous paragraph is equivalent to demanding that L(g) can be inverted up

to terms which represent Riemann surfaces with an open string degeneration, ı.e. surfaces

localized at the boundary of the moduli space. Such surfaces contain a strip domain of

infinite length. Their contribution vanishes when the momentum flowing along the strip

satisfies k2 > 1 because this ensures that only positive conformal weight states propagate

along the infinitely long strip.3 In summary, when we demand that for consistent gauge

choices 1/L(g) is well defined and eq. (1.10) is satisfied, we only demand this to hold up to

terms whose associated Riemann surfaces are localized at the boundary of the moduli space.

To illustrate this consider first the case of Siegel gauge where the corresponding oper-

ator is 1/L0. There we define 1/L0 as

1

L0
≡ lim

Λ0→∞

∫ Λ0

0
ds e−sL0 . (1.13)

A short calculation shows that we have L0

∫ Λ0

0 ds e−sL0 = 1 − e−Λ0L0 for finite Λ0. In a

given line of a Feynman diagram the operator e−Λ0L0 inserts a long strip of width π and

length Λ0 into the Riemann surface associated with the amplitude. In the Λ0 → ∞ limit

we get a Riemann surface at the boundary of the moduli space and its contribution can be

safely ignored in the sense described above. Thus the relation L0

∫ Λ0

0 ds e−sL0 = 1 becomes

exact in the Λ0 → ∞ limit, leading to the definition (1.13) of 1/L0. The analysis for a

linear b-gauge is similar. We attempt to define 1/L(g) for each ghost-number g as

1

L(g)
≡ lim

Λ(g)→∞

∫ Λ(g)

0
ds e−sL(g) . (1.14)

For finite Λ(g) we have L(g)

∫ Λ(g)

0 ds e−sL(g) = 1 − e−Λ(g)L(g). It turns out that unless the

operators L(g) satisfy certain conditions, the e−Λ(g)L(g) factor can generate contributions

away from the boundary of the moduli space even in the Λ(g) → ∞ limit and may not

be ignored. In this case the Schwinger parametrization (1.14) is anomalous and does not

provide a proper inverse to the operator L(g). Contributions to amplitudes which involve

factors of e−Λ(g)L(g) vanish in the limit Λ(g) → ∞ if the vector field v(ξ) is analytic in some

neighborhood of the unit circle |ξ| = 1 and satisfies

v⊥(ξ) ≡ ℜ
(
ξ̄v(ξ)

)
> 0 for |ξ| = 1 . (1.15)

3This cannot be done for loop amplitudes where we need to integrate over the internal momentum and

we get non-vanishing contributions from the tachyon and massless states propagating in the loop. Only

after ignoring these infrared problems, which have a well-defined physical origin, the contributions from

degenerate Riemann surfaces can be dropped.
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Figure 1: The shape of the strip R(s) associated with the operator e−sL(g) .

As the notation indicates, v⊥(ξ) is the component of v(ξ) along the radial outgoing direc-

tion. The above condition states that on the unit circle v(ξ) never vanishes and always

points outward.

So far we have found that an operator B(g) defines a sensible gauge condition if the

associated vector field v(ξ) satisfies (1.12) and (1.15). It is easy to see that if v(−ξ) = v(ξ)

we cannot satisfy (1.15) both at ξ and −ξ̄. We must require v(ξ) to be odd under ξ → −ξ.
We can then summarize the conditions on v(ξ) which guarantee a regular gauge as follows:

v(ξ) =
∑

k∈Z

v2k ξ
2k+1 with v2k ∈ R and v⊥(ξ) ≡ ℜ

(
ξ̄v(ξ)

)
> 0 for |ξ| = 1 , (1.16)

with v(ξ) analytic in some neighborhood of the unit circle |ξ| = 1. These conditions must

be imposed on all the vectors needed to define the B operator.4 For v(ξ) satisfying (1.16) in

every ghost number sector, eqs. (1.10) and (1.11) hold strictly and lead to rigorous proofs of

the decoupling of pure gauge states and the equality of on-shell amplitudes in linear b-gauges

and Siegel gauge. Therefore a gauge choice that satisfies (1.16) will be called a regular gauge.

We would like to emphasize that these conditions, while sufficient for the gauge choice

to be consistent, are not necessary. For example, we may get a consistent gauge choice

even if v(ξ) vanishes at some point ξ0 on the unit circle provided the integral
∫ ξ
dξ′/v(ξ′)

is finite along a contour passing through ξ0 (see footnote 14). This integral can only be

finite if v(ξ) fails to be analytic at ξ0. We will not consider such gauges in this paper.

We show that whenever condition (1.16) is satisfied, the insertion of the operator

e−sL(g) (with s > 0) in a correlation function function can be represented by a strip R(s) of

length s (see figure 1). The coordinate frame for this representation is naturally provided

by the Julia equation. The width of the strip R(s) is non-vanishing, finite, and independent

of s. The strip R(s) is bounded above and below by a pair of horizontal lines with open

string boundary conditions. Unlike the rectangular strip associated with e−sL0, the left and

the right edges of R(s), which are glued to the rest of the Riemann surface, are ragged. In

fact they are identically shaped smooth curves of finite horizontal spread. We prove that

in the s → ∞ limit the insertion of R(s) gives a degenerate Riemann surface — a surface

at the boundary of the moduli space. Using this we show that the extra terms which arise

in the calculation of amplitudes due to the regularization of 1/L(g) are localized near the

boundary of the moduli space and can be ignored. We also explain geometrically why

4Condition (1.4) does not impose further constraints on the vector field v(ξ) because the BPZ dual vector

field v⋆(ξ) satisfies (1.16) whenever v does.
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amplitudes in linear b-gauges other than Siegel gauge cannot exhibit off-shell factorization.

This failure of off-shell factorization was investigated in detail in [31] for the Veneziano

amplitude in Schnabl gauge. We note, however, that off-shell factorization, while elegant

and convenient, is not a physical requirement of amplitudes.

The Schnabl gauge condition (1.5) does not satisfy condition (1.16) because the vector

field v(ξ) associated with B(1) = B vanishes at the point ξ = i on the unit disk: v(i) = 0.

We can find a family of regular gauge choices by taking

B(g) =

{
Bλ for g odd,
(
Bλ
)⋆

for g even,
(1.17)

where

Bλ ≡ eλL0Be−λL0 = b0 + 2

∞∑

k=1

(−1)k+1

4k2 − 1
e−2kλ b2k , 0 < λ <∞ . (1.18)

The vector field associated with Bλ is vλ(ξ) = eλv(e−λξ), where v(ξ) is the vector associated

with B (see (1.5)). For λ > 0 the vector vλ satisfies condition (1.16). For λ→ 0 this gauge

approaches Schnabl gauge. On the other hand as λ→ ∞ this gauge goes over to the Siegel

gauge. Thus we have a family of regular gauges which interpolate between Siegel gauge

and Schnabl gauge.

2. General linear b-gauges

In this section we shall describe general linear b-gauges and the associated propagators. In

section 2.1 we explain in detail the linear b-gauge conditions on the string field. Section 2.2

will be devoted to the computation of the propagator in a general linear b-gauge. In

section 2.3 we describe some algebraic properties of the propagator which will be useful

in section 3 for studying amplitudes in string field theory. In section 2.4 we analyze the

conditions under which a linear b-gauge can be considered a physically reasonable gauge

choice. Finally in section 2.5 we give some explicit examples of linear b-gauges.

2.1 Gauge conditions, ghosts, and gauge fixed action

The gauge-fixing procedure begins by imposing a gauge condition on the classical open

string fields, ı.e. the fields |ψ(1)〉 at ghost number one. The free string field theory that

includes these fields is simply

S1 = −1

2
〈ψ(1)|Q|ψ(1)〉 . (2.1)

The gauge invariance δǫ|ψ(1)〉 = Q|ǫ(0)〉, where |ǫ(0)〉 is an arbitrary gauge parameter of

ghost number zero, is fixed with the gauge condition:

B(1)|ψ(1)〉 = 0 . (2.2)

The operator B(1) above is some particular linear combination of the oscillators bn.
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In the Fadeev-Popov (FP) procedure one considers the gauge-fixing functions Fi(ψ),

such that Fi(ψ) = 0 are the gauge-fixing conditions, and writes a FP ghost action of the

form

SFP ∼ b̂i
(
ĉα

δ

δǫα

)
δǫFi(ψ) . (2.3)

Here ĉα and b̂i are the FP ghosts and FP antighosts respectively, and δǫFi is the variation

of the gauge fixing functions under infinitesimal gauge transformation with parameters

ǫi. The FP antighosts are in one-to-one correspondence with the gauge-fixing conditions

and the FP ghosts are in one-to-one correspondence with the gauge parameters. Since

the gauge transformation parameters in open string field theory are in one-to-one corre-

spondence with ghost-number zero states in the underlying conformal field theory (CFT),

it is natural to represent the FP ghost fields by ghost-number zero states |ψ(0)〉 of the

CFT. For gauge conditions of the type (2.2) we can associate the FP antighost fields with

ghost-number three states 〈ψ̃(3)| of the CFT, since the ghost action may then be written as

S2 =−〈ψ̃(3)|
(
ψ(0)

δ

δǫ(0)

)
B(1)δǫ|ψ(1)〉=−〈ψ̃(3)|

(
ψ(0)

δ

δǫ(0)

)
B(1)Q|ǫ(0)〉=−〈ψ̃(3)|B(1)Q|ψ(0)〉 ,

(2.4)

where the minus sign has been included for later convenience. It is natural to absorb the

B(1) factor into the definition of the bra by setting

〈ψ(2)| ≡ 〈ψ̃(3)|B(1) , (2.5)

so that we have

S2 = −〈ψ(2)|Q|ψ(0)〉 . (2.6)

Note that 〈ψ(2)| contains fewer degrees of freedom than 〈ψ̃(3)| since it is subject to the

condition

〈ψ(2)|B(1) = 0 → B ⋆
(1)|ψ(2)〉 = 0 . (2.7)

Here B ⋆
(1) denotes the BPZ conjugate of B(1). In fact the degrees of freedom of 〈ψ(2)| are in

one to one correspondence with the gauge-fixing conditions (2.2) since the latter may be

expressed as 〈s|ψ(1)〉 = 0 for arbitrary ghost-number two states 〈s| satisfying 〈s|B(1) = 0.

Thus 〈ψ(2)| is a more faithful representation of the FP antighost fields than 〈ψ̃(3)|. Note

that the ‘gauge condition’ (2.7) on ghost-number two states was preordained once we chose

the gauge condition (2.2) on states of ghost number one.

As is well known, the gauge-fixing procedure does not stop here since the ghost ac-

tion (2.6) also has gauge invariance. This forces us to include an infinite set of FP ghost

fields represented by CFT states of ghost number ≤ 0, and an infinite set of FP antighost

fields represented by CFT states of ghost number ≥ 2 [4, 5]. To proceed in a more system-

atic fashion, it is convenient to introduce the full string field |ψ〉 which is a sum over the

string fields |ψ(g)〉 of different ghost numbers g:

|ψ〉 =
∑

g

|ψ(g)〉 . (2.8)
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Let

B(g)|ψ(g)〉 = 0 , (2.9)

be the ‘gauge condition’ on |ψ(g)〉. So far (2.7) tells us that

B(2) = B ⋆

(1) . (2.10)

At the next step of gauge fixing, the gauge invariance δǫ|ψ(0)〉 = Q|ǫ(−1)〉 of (2.6) requires

that we impose a gauge condition

B(0)|ψ(0)〉 = 0 . (2.11)

The choice of B(0) is quite arbitrary. We need not choose it equal to B(1) or B⋆
(1); it can be

a new linear combination of bn oscillators. The gauge condition (2.11) leads to an action

S3 = −〈ψ̃(4)|B(0)Q|ψ(−1)〉 ≡ −〈ψ(3)|Q|ψ(−1)〉 , with B⋆
(0)|ψ(3)〉 = 0 . (2.12)

This stage of gauge fixing has given us

B(3) = B⋆
(0) . (2.13)

Proceeding this way we can pick a new linear combination of bn oscillators for B(g) for all g ≤
0 to gauge fix the FP ghosts |ψ(g)〉. We then introduce FP ghosts |ψ(g−1)〉 and associated

FP antighosts 〈ψ(3−g)| which satisfy the condition B⋆
(g)|ψ(3−g)〉 = 0. This shows that

B(3−g) = B⋆
(g) . (2.14)

This is an important result. Since subspaces at ghost numbers g and 3 − g are BPZ dual,

the gauge-fixing condition can be chosen freely only over “half” the states.

We can rewrite the gauge conditions (2.9) in a compact form by introducing the gauge-

fixing operator B that acts on the full string field. At each ghost number, B is defined to

act as the operator that imposes the relevant gauge condition. We have

B =
∑

g

B(g) Πg , (2.15)

where Πg is the projector to the space of states of ghost number g. The gauge-fixing

condition (2.9) can then be written as B |ψ〉 = 0 since

B|ψ〉=0 =⇒
∑

g

B(g)Πg

∑

g′

|ψ(g′)〉=
∑

g

B(g)|ψ(g)〉=0 =⇒ B(g)|ψ(g)〉=0 for all g . (2.16)

The complete gauge fixed free action is given by

S = −1

2
〈ψ(1)|Q|ψ(1)〉 −

∞∑

g=2

〈ψ(g)|Q|ψ(2−g)〉 = −1

2

∞∑

g=−∞

〈ψ(g)|Q|ψ(2−g)〉 = −1

2
〈ψ|Q|ψ〉 ,

(2.17)
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with the string field |ψ〉 subject to the gauge condition B|ψ〉 = 0.5 As is well known, the

interaction term of the gauge fixed action takes the form − go

3 〈ψ|ψ ∗ ψ〉.
In order to facilitate the computation of the propagator in a general linear b-gauge,

we shall now write down the projector that projects onto the gauge slice. For each ghost

number g, we introduce a ghost-number one operator C(g) such that6

{
B(g) , C(g)

}
= 1 . (2.18)

This equation implies that {
B⋆

(g) ,−C⋆
(g)

}
= 1 . (2.19)

Since B⋆
(g) = B(3−g), this allows us to choose the C(g)’s in such a way that

C(3−g) ≡ −C⋆
(g) . (2.20)

The projection operator ΠS into the gauge slice may now be expressed as

ΠS =
∑

g

B(g)C(g) Πg . (2.21)

Indeed, as a consequence of (2.18) this gives

ΠS |ψ(g)〉 = B(g)C(g)|ψ(g)〉 = |ψ(g)〉 , (2.22)

for a string field |ψ(g)〉 satisfying the gauge condition (2.9). One readily verifies that

ΠSΠS = ΠS . To calculate the BPZ conjugate of ΠS , we first need to know the BPZ

conjugate of the ghost number projector Πg. As the inner product of a state of ghost number

g with a state of ghost number g′ is non-vanishing only for g′ = 3 − g, we conclude that

Π⋆
g = Π3−g . (2.23)

We then have

(
B(g)C(g)Πg

)⋆
= −Π⋆

g C⋆
(g)B⋆

(g) = C(3−g)B(3−g)Π3−g =
(
1 − B(3−g)C(3−g)

)
Π3−g . (2.24)

Recalling the definition (2.21), we obtain

Π⋆
S = 1 − ΠS . (2.25)

Clearly Π⋆
SΠ⋆

S = Π⋆
S, so Π⋆

S is the orthogonal projector.

5The equality 〈ψ(g)|Q|ψ(2−g)〉 = 〈ψ(2−g)|Q|ψ(g)〉, used to extend the summation range in (2.17), holds

because all string fields are Grassmann odd and Q⋆ = −Q.
6If the gauge condition B(g) contains a contribution of the form v0b0, we can choose C(g) = v−1

0 c0. As

we will see, this is always possible for regular linear b-gauges, as v0 > 0 in this case.

– 10 –



J
H
E
P
0
3
(
2
0
0
8
)
0
5
0

2.2 The propagator

As a next step, we derive the propagator for the class of gauge conditions discussed in

section 2.1. To illustrate the procedure, let us briefly review one way of deriving the

propagator of the free classical string field theory. We start out by adding a source term

to the free classical gauge-fixed action:

S1[ψ , J ] = −1

2
〈ψ(1)|Q|ψ(1)〉 + 〈ψ(1)|J(2)〉 . (2.26)

Here, the string field |ψ(1)〉 is subject to the gauge condition B(1)|ψ(1)〉 = 0. As usual,

sources are arbitrary: they are neither killed by Q nor are they subject to gauge condi-

tions. We can then eliminate the classical string field |ψ(1)〉 from the action by solving its

equation of motion

C⋆
(1)B⋆

(1)

(
Q |ψ(1)〉 − |J(2)〉

)
= 0 . (2.27)

The solution to this equation for the string field |ψ(1)〉 which also obeys the gauge condition

B(1)|ψ(1)〉 = 0 is given by

|ψ(1)〉 =
B(1)

L(1)
Q

B⋆
(1)

L⋆
(1)

|J(2)〉 , (2.28)

where L(g) = {Q,B(g)}. In deriving (2.28) we have assumed the existence of the opera-

tors 1/L(1) and 1/L⋆
(1) which invert L(1) and L⋆

(1) respectively, in the sense described in

section 1. In section 4 we will examine what conditions we have to impose on the gauge

choice to be able to rigorously define the operators 1/L(g). For now we assume that such a

suitable choice of gauge has been made. Plugging (2.28) back into the action (2.26) yields

S1[ψ(J), J ] =
1

2

〈
J(2)

∣∣∣
B(1)

L(1)
Q

B⋆
(1)

L⋆
(1)

∣∣∣J(2)

〉
. (2.29)

This allows us to identify the propagator in the classical open string field theory as

P(2) =
B(1)

L(1)
Q

B⋆
(1)

L⋆
(1)

=
B(1)

L(1)
Q

B(2)

L(2)
, (2.30)

where we have used the result from (2.10) that B⋆
(1) = B(2). The subscript in P(2) indicates

that this propagator naturally acts on the ghost-number two source |J(2)〉. A propagator

with the same operator structure as P(2) in (2.30) first appeared in [33]. For the case of

Schnabl gauge, the above propagator was first mentioned in [7] and it was used to calculate

the off-shell Veneziano amplitude in [30, 31].

It is now easy to generalize this construction to the complete gauge-fixed free ac-

tion (2.17). We include sources |J(3−g)〉 for gauge-fixed string fields |ψ(g)〉 of all ghost

numbers and obtain

S[ψ, J ] = −1

2

∞∑

g=−∞

〈ψ(g)|Q|ψ(2−g)〉 +
∞∑

g=−∞

〈ψ(g)|J(3−g)〉 . (2.31)
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The equation of motion for |ψ(g)〉 now reads

C⋆
(g)B⋆

(g)

(
Q |ψ(2−g)〉 − |J(3−g)〉

)
= 0 . (2.32)

It is again straightforward to determine the string field |ψ(2−g)〉 which solves this equation

and also satisfies the gauge condition B(2−g)|ψ(2−g)〉 = 0. We obtain

|ψ(2−g)〉 =
B(2−g)

L(2−g)
Q

B⋆
(g)

L⋆
(g)

|J(3−g)〉 , (2.33)

or, equivalently,

〈ψ(g)| = 〈J(1+g)|
B(2−g)

L(2−g)
Q

B⋆
(g)

L⋆
(g)

. (2.34)

Plugging these results back into (2.31) yields

S[ψ(J), J ]=
1

2

∞∑

g=−∞

〈
J(1+g)

∣∣∣
B(2−g)

L(2−g)
Q

B⋆
(g)

L⋆
(g)

∣∣∣J(3−g)

〉
=

1

2

∞∑

g=−∞

〈
J(4−g)

∣∣∣
B(g−1)

L(g−1)
Q

B(g)

L(g)

∣∣∣J(g)

〉
,

(2.35)

where we used (2.14) in obtaining the second equality. We can now identify the propagator

P(g) acting on the source |J(g)〉 of ghost number g as

P(g) =
B(g−1)

L(g−1)
Q

B(g)

L(g)
. (2.36)

Alternative expressions obtained by using the BPZ conjugation property (2.14) are

P(g) =
B(g−1)

L(g−1)
Q

B⋆
(3−g)

L⋆
(3−g)

=
B⋆

(4−g)

L⋆
(4−g)

Q
B(g)

L(g)
=

B⋆
(4−g)

L⋆
(4−g)

Q
B⋆

(3−g)

L⋆
(3−g)

. (2.37)

We can simplify notation by combining all sources |J(g)〉 into a single source

|J〉 ≡
∞∑

g=−∞

|J(g)〉 , (2.38)

just as we did for the gauge-fixed string field |ψ〉 in (2.8). Let us furthermore define the

full propagator P as the operator whose action on a subspace of ghost number g is given

by P(g), i.e.

P ≡
∞∑

g=−∞

P(g) Πg . (2.39)

Then the elimination of |ψ〉 from the free action can be conveniently summarized as

S[ψ, J ] = −1

2
〈ψ|Q|ψ〉 + 〈ψ|J〉 → S[ψ(J), J ] =

1

2
〈J |P|J〉 . (2.40)

Equations (2.36) and (2.39) give the full propagator P for general linear b-gauges. The

propagator acts differently on states of different ghost number. This is not surprising,

considering that for generic linear b-gauges it is impossible to impose the same gauge

condition on states of all ghost numbers.
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2.3 Properties of the propagator

Let us now turn to study the algebraic properties of the full propagator. We claim that P
satisfies the important relation

{Q,P} = 1 . (2.41)

We can prove this property as follows:

{Q,P}Πg =
(
QP(g) + P(g+1)Q

)
Πg =

(
Q

B(g−1)

L(g−1)
Q

B(g)

L(g)
+

B(g)

L(g)
Q

B(g+1)

L(g+1)
Q

)
Πg

=

(
Q

B(g)

L(g)
+

B(g)

L(g)
Q

)
Πg = Πg . (2.42)

Here we have again assumed that the operator 1/L(g) can be defined rigorously in the

sense described in section 1 for the linear b-gauge under consideration. Equation (2.42)

shows that {Q,P} = 1 holds on all subspaces of fixed ghost number g, and it thus holds

in general. Notice that P(g), regarded as an operator acting on states of arbitrary ghost

number, generically does not satisfy the same property:

{Q,P(g)} = Q
B(g)

L(g)
+

B(g−1)

L(g−1)
Q 6= 1 if B(g) 6= B(g−1) . (2.43)

It is precisely the property (2.41) which will allow us to prove the decoupling of pure-gauge

states and the correctness of on-shell amplitudes in section 3.

The propagator P is BPZ-invariant,

P⋆ = P . (2.44)

Indeed, using (2.14) and (2.23) we obtain

(
P(g) Πg

)⋆
= Π⋆

g

B⋆
(g)

L⋆
(g)

Q
B⋆

(g−1)

L⋆
(g−1)

= Π3−g

B(3−g)

L(3−g)
Q

B(4−g)

L(4−g)
=

B(3−g)

L(3−g)
Q

B(4−g)

L(4−g)
Π4−g . (2.45)

Recalling the definition (2.39) of the propagator, this establishes P⋆ = P.

In addition, the propagator satisfies a set of simple properties related to the projection

operator ΠS to the gauge slice:

ΠS P = P Π⋆
S = P, Π⋆

S P = P ΠS = 0 . (2.46)

These equations are readily checked acting on subspaces of fixed ghost number, using the

definitions of P(g) and ΠS , and eq. (2.25).

It is convenient to introduce the gauge-fixed kinetic operator K, given by

K ≡ Π⋆
S QΠS , K⋆ = −K . (2.47)

Using this and {Q,P} = 1 we then find

P K = P Π⋆
S QΠS = P QΠS = (1 −QP)ΠS = ΠS . (2.48)
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This and the BPZ conjugate relation are

P K = ΠS , KP = Π⋆
S . (2.49)

This shows that, as expected, the propagator inverts the gauge-fixed kinetic operator on

the gauge slice.

2.4 Constraints on linear b-gauges

So far in our analysis we have not imposed any restriction on the linear combinations of

bn oscillators which define the operators B(g). The vector field v(ξ) associated with any of

the operators B(g) through the relations

B(g) =

∫
dξ

2πi
v(ξ)b(ξ) =

∑

n

vnbn , v(ξ) =
∑

n

vnξ
n+1 , (2.50)

was taken to be completely arbitrary. In this subsection we will examine what constraints

we need to impose on the coefficients vn to obtain a physically reasonable gauge choice.

First of all, in order to facilitate the analysis of string perturbation theory we require

that the string field theory Feynman diagrams represent correlation functions on Riemann

surfaces. For this we require the validity of the Schwinger representation of the factors of

1/L(g) in the propagator:

1

L(g)
= lim

Λ(g)→∞

∫ Λ(g)

0
ds e−sL(g) . (2.51)

Furthermore, the insertion of e−sL(g) into a correlation function must represent the insertion

of a piece of world sheet to the Riemann surface that represents the rest of the diagram.

For this L(g) must generate a conformal transformation. In open string theory a conformal

transformation δξ ∝ v(ξ) is generated by

∫

C

(
dξ

2πi
v(ξ)T (ξ) +

dξ̄

2πi
v(ξ) T (ξ)

)
, (2.52)

where C denotes the unit semicircle in the upper-half plane and bars indicate complex

conjugation. Replacing v(ξ) by ξn+1 we get the generators of conformal transformation:

Ln =

∫

C

(
dξ

2πi
ξn+1 T (ξ) +

dξ̄

2πi
ξ̄n+1 T (ξ)

)
. (2.53)

This gives

L(g) =
∑

n

vnLn =

∫

C

(
dξ

2πi
v(ξ)T (ξ) +

dξ̄

2πi
v(ξ̄)T (ξ)

)
. (2.54)

This does not have the form of the generator (2.52) unless

v(ξ) = v(ξ̄) . (2.55)
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Thus, in order that the Feynman diagrams generated by open string field theory have a

direct Riemann surface interpretation we must require that the coefficients vn be real,7 ı.e.

v(ξ) to be real on the real axis.

Even when (2.55) holds and the insertion of e−sL(g) has a Riemann surface interpreta-

tion, eq. (2.51) may fail to provide the correct definition of 1/L(g) due to a non-vanishing

contribution from the upper limit of integration. This requirement will be analyzed in

detail in section 4. It leads to condition (1.15) which requires the vector field v(ξ) to be

analytic in some neighborhood of the unit circle |ξ| = 1 and to satisfy

v⊥(ξ) ≡ ℜ
(
ξ̄v(ξ)

)
> 0 for |ξ| = 1 . (2.56)

Secondly, in order that the open string field theory action is real, describing a unitary

quantum theory, the string field and the interaction vertices must satisfy certain reality

conditions. The reality condition on the string field is easily stated [34]: the combined

operations of BPZ conjugation and hermitian conjugation (HC) — called star conjugation

– must leave the string field invariant. In open string field theory the interaction term

must also be real. If the string field is real, the interaction term is real once the coordinate

systems around the punctures on the Riemann surface associated with the interaction

vertex satisfy a reality condition. The interaction vertex of Witten’s open string field

theory satisfies this condition.

Therefore, when we impose linear b-gauge conditions we must make sure that this

can be done consistently with the constraint of real string fields. Since the total effect

of BPZ followed by HC does not change the ghost number, we can analyze the condition

on string fields of fixed ghost number. Consider the gauge condition B(g)|ψ(g)〉 = 0, with

B(g) related to a vector field v(ξ) through the relation (2.50). In order to impose the

reality condition we need that if |ψ(g)〉 satisfies the gauge condition then the star-conjugate

of |ψ(g)〉 automatically satisfies the gauge condition – this allows us to form the linear

combination required for reality. For this we must have (B⋆
(g))

† ∝ B(g) with † denoting

hermitian conjugation. Since the operation of star conjugation is an involution one can

only have

(B⋆
(g))

† = eiα B(g) , (2.57)

with α real. Recalling that (bn)⋆ = (−1)nb−n and (bn)† = b−n, a short calculation shows

that

B⋆
(g) ≡

∫
dξ

2πi
b(ξ)v⋆(ξ) , with v⋆(ξ) = −ξ2v

(
−1/ξ

)

B†

(g)
≡
∫

dξ

2πi
b(ξ)v†(ξ) , with v†(ξ) = ξ2 v

(
1/ξ̄

)
.

(2.58)

Thus (2.57) holds if (v⋆)† = eiαv. Since

(v⋆(ξ))† =
(
−ξ2v(−1/ξ)

)†
= ξ2

(
−ξ̄−2 v(−ξ̄)

)
= − v(−ξ̄) , (2.59)

7We can try to define the results for complex vn by analytic continuation of the real vn results. This

trick was used in [33] to discuss the gauge condition (b1 +b−1)|ψ〉 = 0. We shall not consider this possibility

here.
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we can rewrite the condition on v(ξ) as

eiαv(ξ) = − v(−ξ̄) , for some real α . (2.60)

Recalling that we required v(ξ) to be real on the real axis, only eiα = ∓1 are allowed

in (2.60). Combining this with the condition (2.55) we conclude that the vector field v has

to be either even or odd under ξ → −ξ:

v(−ξ) = ± v(ξ) . (2.61)

It is easy to see that the choice v(−ξ) = v(ξ) is not compatible with conditions (2.55)

and (2.56). To prove this assume that condition (2.56) is satisfied for some ξ on the

upper-half unit circle:

ℜ
(
ξ̄ v(ξ)

)
> 0 . (2.62)

Using (2.55) and v(−ξ) = v(ξ), it immediately follows that

ℜ
(
(−ξ̄)v(−ξ̄)

)
= ℜ

(
(−ξ̄)v(−ξ̄)

)
= ℜ

(
(−ξ̄)v(−ξ)

)
= −ℜ

(
ξ̄v(ξ)

)
< 0 , (2.63)

in contradiction with condition (2.56) for −ξ̄. Thus we conclude that physically reasonable

gauges must satisfy

v(ξ) = v(ξ̄) , v(−ξ) = −v(ξ) , (2.64)

and thus

v(ξ) =
∑

k∈Z

v2k ξ
2k+1 with v2k ∈ R . (2.65)

It should be noted that the conditions derived so far are consistent with (2.14) – if v(ξ)

satisfies (2.56) and the additional conditions (2.64), so does the dual vector v⋆(ξ). Indeed,

on the unit circle

ξ̄v⋆(ξ) = −ξv(−1/ξ) = ξv(1/ξ) = ξv(ξ̄) = ξ̄ v(ξ) . (2.66)

It follows that ℜ
(
ξ̄v⋆(ξ)

)
= ℜ

(
ξ̄ v(ξ)

)
> 0, as we wanted to show. It is straightforward to

show that v⋆(ξ) satisfies (2.64).

One can examine the constraint (2.56) more explicitly using the Laurent expansion of

the vector v(ξ). Writing ξ = eiθ we find

v⊥(eiθ) = v0 +
∑

k 6=0

v2k cos(2kθ) > 0 . (2.67)

Thus the average of v⊥(eiθ) over 0 ≤ θ ≤ π is given by

1

π

∫ π

0
dθ v⊥(eiθ) = v0 , (2.68)

leading to the constraint

v0 > 0 . (2.69)
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All operators B(g) must contain a component along b0 with positive coefficient. It also

follows from (2.67) that

v0 >
∑

k 6=0

|v2k| (2.70)

is sufficient (but not necessary!) for condition (2.56) to be satisfied. It is useful to check

that (2.70) is not satisfied for Schnabl gauge. In this gauge (1.5) tells us that the only

nonvanishing coefficients are

v0 = 1 , v2k =
2(−1)k+1

4k2 − 1
, k = 1, 2, . . . (2.71)

A short calculation gives

∞∑

k=1

|v2k| = 2

∞∑

k=1

1

4k2 − 1
= 1 = v0 , (2.72)

showing that (2.70) is marginally violated. This failure is in fact related to the vanishing

of v(ξ) for ξ = i:

v(ξ) = i

(
v0 +

∞∑

k=1

v2k(−1)k

)
= i

(
v0 −

∞∑

k=1

|v2k|
)

= 0 . (2.73)

The vanishing of the vector at any point on the circle means that the conditions for a

regular gauge are not satisfied.

2.5 Examples

To define a specific linear b-gauge, we need to choose a linear combination of oscillators

bn for each B(g) with g ≤ 1. The remaining B(g) are then fully determined through the

relation (2.14), B(3−g) = B⋆
(g). The simplest linear b-gauge is Siegel gauge: B(g) = b0. As

the Siegel gauge condition is BPZ invariant, we can impose the same condition on string

fields of all ghost numbers. Schnabl gauge corresponds to the choice B(1) = B for classical

string fields, with B defined in (1.5). Geometrically, B can be understood as the zero mode

of the antighost in the sliver frame:

B = f−1 ◦
∮

dz

2πi
zb(z) =

∮
dξ

2πi

f(ξ)

f ′(ξ)
b(ξ) =

∮
dξ

2πi
v(ξ)b(ξ) , (2.74)

where ◦ denotes a conformal transformation, the sliver frame coordinate z = f(ξ) is given by

f(ξ) =
2

π
tan−1 ξ , (2.75)

and

v(ξ) =
f(ξ)

f ′(ξ)
= (1 + ξ2) tan−1 ξ (2.76)

is the vector field associated with B. The function f maps the point ξ = i to infinity. This

property implies that the sliver, regarded as a surface state with local coordinates on the

upper half plane defined through the map f , is a projector. Conversely, any map f(ξ) that
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sends the point i to infinity can be used to describe a projector. A gauge choice is called a

projector gauge if B(1) is defined just like the operator B in (2.74), but with f(ξ) describing

an arbitrary projector. Thus Schnabl gauge is a projector gauge. For any projector gauge

f(ξ) diverges at ξ = i and so does ln f(ξ) and its derivative f ′(ξ)/f(ξ). It follows that the

associated vector field v(ξ) = f(ξ)/f ′(ξ) vanishes at ξ = i and hence fails to satisfy condi-

tion (1.15). Thus projector gauges are not regular gauges in the sense described in section 1.

There is a natural one-parameter family of regular gauges B(1) = Bλ parameterized by

0 < λ <∞ which interpolates between Siegel and Schnabl gauge. Bλ is defined by

Bλ ≡ eλL0 B e−λL0 , with 0 < λ <∞ . (2.77)

Since B is the sum of b0 and a linear combination of bn’s with n > 0, the relation

eλL0 bn e
−λL0 = e−λnbn (2.78)

ensures that we recover Siegel gauge in the limit λ→ ∞:

lim
λ→∞

Bλ = b0 , (2.79)

Schnabl gauge on the other hand is not a regular linear b-gauge and corresponds to λ→ 0:

B = lim
λ→0

Bλ . (2.80)

The operator Bλ is also the zero mode of the antighost field in a certain conformal

frame determined up to a real scaling. To determine such a frame z = fλ(ξ) we note that

the associated vector field vλ(ξ) differs in a simple manner from the sliver vector field v(ξ)

of (2.76). If we expand

v(ξ) =
∑

k∈Z

v2k ξ
2k+1 , (2.81)

then equation (2.78) tells us that

vλ(ξ) =
∑

k∈Z

v2k e
−2kλξ2k+1 = eλ

∑

k∈Z

v2k

(
e−λξ

)2k+1
= eλ v

(
e−λξ

)
. (2.82)

It is now simple to verify that

fλ(ξ) = f
(
e−λξ

)
=

2

π
tan−1

(
e−λξ

)
, (2.83)

satisfies the expected relation fλ(ξ)/fλ′(ξ) = vλ(ξ). For any λ > 0 the coordinate curve

fλ(eiθ), θ ∈ [0, π] is smooth and reaches a maximum finite height for θ = π/2, as shown in

figure 2.8

8In (2.83) we chose the normalization 2/π to reproduce the sliver frame coordinate (2.75) in the limit

λ → 0. Alternatively, the normalization 1/ tan−1(e−λ) is convenient to study the Siegel limit λ → ∞,

because we have fλ(ξ) = tan−1(e−λξ)/ tan−1(e−λ) = ξ + O(e−λ) in this case.
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Figure 2: The coordinate curve fλ(eiθ), θ ∈ [0, π] associated with Bλ, plotted for λ =

1, 0.1, 0.01, 0.001, and λ = 0. The latter is the sliver frame and the coordinate curve consists

of straight vertical lines that reach i∞ for θ = π/2.

The vector field vλ(ξ) given in (2.82) satisfies the conditions (1.16). The only nontrivial

condition is the one rephrased in (2.67). From (2.82) we see that the expansion coefficients

for the vector fields vλ and v are related by

vλ
2k = e−2kλv2k , k = 0, 1, 2, . . . . (2.84)

It then follows that for any λ > 0

∞∑

k=1

|vλ
2k| <

∞∑

k=1

|v2k| = 1 , (2.85)

after use of (2.72). This shows that the vector vλ satisfies (2.70), which suffices for a

regular gauge. The Bλ gauge is not a projector gauge for λ > 0 and does not exhibit

the problematic properties of Schnabl gauge. The λ parameter allows us to interpolate

between Schnabl and Siegel gauge. It may also allow us to regularize and define amplitudes

in Schnabl gauge as the limit λ→ 0 of amplitudes in the Bλ gauge.

Neither Schnabl gauge nor the Bλ gauges impose a BPZ invariant gauge condition on

the classical string field |ψ(1)〉. There is therefore no preferred choice of gauge conditions

on the ghost sector string fields. Let us discuss one possible assignment of gauge conditions

which we will call alternating gauge. In alternating gauge, we apply the classical gauge

condition B(1)|ψ(1)〉 = 0 to all string fields of odd ghost number g,

B(1)|ψ(g)〉 = 0 for g odd . (2.86)
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Figure 3: Diagram illustrating the movement of Q through a vertex.

This exhausts our freedom to choose conditions. The relation B(3−g) = B⋆
(g) forces us to

assign the BPZ conjugate condition on string fields of even ghost number g:

B⋆
(1)|ψ(g)〉 = 0 for g even . (2.87)

Let us denote the projectors onto states of even and odd ghost numbers by Π+ and Π−,

respectively. Then we can state the gauge condition as

B|ψ〉 = 0 , with B ≡ B(1) Π− + B⋆
(1) Π+ . (2.88)

The propagator in alternating gauge is readily seen to be given by

P =
B(1)

L(1)
Q

B⋆
(1)

L⋆
(1)

Π+ +
B⋆

(1)

L⋆
(1)

Q
B(1)

L(1)
Π− . (2.89)

3. Analysis of on-shell amplitudes

In this section we shall analyze the on-shell amplitudes in a general linear b-gauge. In

section 3.1 we give a simple proof of the decoupling of pure-gauge states. In section 3.2 we

prove the equality of on-shell amplitudes in a general linear b-gauge and the Siegel gauge.

Since the latter is known to reproduce correctly the Polyakov amplitudes in open string

theory, this establishes that the on-shell amplitudes in a linear b-gauge give the correct S-

matrix of open string theory. The proofs in this section rely on the validity of the relation

{Q,P} = 1 . (3.1)

In section 4 and section 5 we will carefully analyze this relation by regularizing the oper-

ators 1/L(g) that enter in the definition of P. We will then determine the conditions that

we need to impose for all correction terms to be localized at the boundary of open string

moduli space in the limit when we remove the regularization. We will find that (3.1) can

be made rigorous for gauge choices which are regular gauges as defined in section 1.

3.1 Decoupling of pure gauge states

Consider an on-shell amplitude where every external state is BRST closed and, furthermore,

one of the external states is pure gauge, ı.e. has the form Q|χ〉 for some ghost-number zero

state |χ〉. In this case we can move the Q through the various propagators and vertices of
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Figure 4: Another diagram illustrating the movement of Q through a vertex.

Figure 5: Diagram illustrating the movement of Q through a propagator.

Figure 6: Diagram illustrating Q collapsing a propagator.

Figure 7: Moving Q through a diagram. There are many different ways of moving Q through a

diagram, as shown in figures (a) and (b); but the final result is independent of this choice.

a Feynman diagram contributing to this amplitude using the relations

Q(1) |V123〉 = −
(
Q(2) +Q(3)

)
|V123〉 , (3.2)

(
Q(1) +Q(2)

)
|V123〉 = −Q(3)|V123〉 , (3.3)

QP = −P Q+ 1 (3.4)

QP + P Q = 1 . (3.5)

Here |V123〉 denotes the three string vertex. The diagrammatic representations of these

three identities are shown in figures 3, 4, 5, and 6. An example of how Q moves through

a given diagram has been shown in figure 7. In fact there are many different orders in

which we can move Q through a given diagram, as shown in figures 7(a) and 7(b), but the
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Figure 8: The cancelation between s- and t-channel diagrams with collapsed propagators.

final result is independent of this choice and so for each diagram we make a fixed choice.

Eqs. (3.4) and (3.5) show that during the process of moving Q through a propagator we

are left with an extra contribution where the propagator is replaced by unity. We label

it by a collapsed propagator, ı.e a four point vertex. It is clear from the identities (3.2)–

(3.5) and their diagrammatic representations figure 3-figure 6 that the BRST operator

moves through the diagram until it hits an external state, or until it collapses an internal

propagator. The contributions from hitting external states vanish, because the external

states are BRST closed. Therefore we are left with the contributions from collapsing

propagators. A diagram with n internal propagators gives rise to n such terms. In each

term, one internal line of the diagram has collapsed, while all other lines have the original

propagator P. We now combine contributions from different Feynman diagrams. In this

case each diagram with a collapsed propagator arises in two different ways, one where the

collapsed propagator appears as a t-channel propagator, and another where it appears as

an s-channel propagator (see figure 8).9 When this propagator collapses, the t-channel and

s-channel diagrams are indistinguishable, and their contributions cancel because they come

with opposite signs — a result familiar from the proof of decoupling of pure gauge states

in ordinary Siegel gauge amplitudes. Thus the diagrams with collapsed propagators cancel

pairwise. This finishes our proof of decoupling of pure gauge states in on-shell amplitudes.

While the proof itself was straight-forward, it is important to identify the main ingredi-

ent of the proof. It is in fact eq. (3.4) that tells us that when Q passes through a propagator

it leaves behind a contribution that is unity. Had this been a non-trivial operator in the

CFT, the cancellation between the s- and t-channel diagrams of figure 8 would not have

been possible.

3.2 Proof of equivalence to Siegel gauge amplitudes

Let us denote by

P =
b0
L0

, (3.6)

9Since in the Riemann surface interpretation of string field theory Feynman diagrams each line is blown

up to a strip, the cyclic ordering of the labels i, j, k, l is important. Thus for example if we exchange the

labels i and j in the left-most diagram of figure 8 then it would be regarded as a different string Feynman

diagram. For this reason a diagram with a collapsed u-channel propagator has a different structure and

needs to be combined with another diagram carrying a different cyclic ordering of the labels i, j, k, l from

the one shown in figure 8.
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(a) (b)

Figure 9: Irreducible and reducible propagators.

the propagator in the Siegel gauge. Then the propagator in a general linear b-gauge is

given by

P = P + [Q, Ω ] . (3.7)

where10

Ω ≡ P ∆P , ∆P ≡ P − P . (3.8)

Indeed, recalling that {Q,P} = {Q,P} = 1 we find

[Q, Ω ] = {Q,P }∆P − P {Q,∆P } = ∆P . (3.9)

While equation (3.7) holds for a large class of linear b-gauges, it can break down when

certain conditions on the operators B(g) are not fulfilled. We will determine these conditions

in section 4 and section 5. We shall now show that assuming relation (3.7) we can replace

all the propagators P by the Siegel gauge propagator P in on shell amplitudes. The proof

will use manipulations similar to the ones used in section 3.1; however the combinatorics

will be somewhat different.

Let us consider Feynman diagrams with k external legs and n internal legs. Since we

have only three point vertices, the number n is the same for all the diagrams contributing

to an amplitude at any given order. The external lines are always labeled, but we shall

also label the internal lines as 1, 2, · · · n. There are n! ways of doing this, so we sum over

all the n! possibilities and divide each diagram by n!. We repeat this for every Feynman

diagram contributing to a given amplitude at a given order.

Now we collect all Feynman diagrams contributing to an amplitude and replace P by

P+QΩ−ΩQ in propagator number 1 in each of these diagrams. There are two possibilities:

(a) the propagator 1 may be irreducible, ı.e. the diagram does not break into two pieces

when we cut it, (b) it may be reducible so that the diagram breaks into two pieces when

we cut it (see figure 9). We first consider the possibility (a). For each diagram of this type,

we begin with the QΩ term and move the Q through vertices and propagators using the

relations (3.2)- (3.5). During the process of moving Q through any of the other (n − 1)

propagators, we again pick up an extra contribution where the propagator is replaced by

unity. As in section 3.1, we display this by a collapsed propagator, ı.e a four point vertex,

10In the left definition of (3.8) we could replace P = b0/L0 by any other operator eB/eL where eB is an

appropriate linear combination of the bn’s and eL = {Q, eB}, but we have chosen it to be b0/L0 to simplify

our formulæ.
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but this time the vertex carries the label of the propagator that collapsed, as in figure 8.

Other terms where the Q hits external states vanish since the external states are BRST

invariant. But this time, because of the irreducibility of propagator 1, we are left with one

more term, ΩQ, from bringing the Q back to the original propagator 1 on the other side

of Ω. This term cancels the −ΩQ term of the commutator. Thus, at the end, the [Q,Ω]

part of propagator 1 in a given Feynman diagram of type (a) reduces to a collection of

(n−1) diagrams each of which has the operator Ω on propagator 1, a collapsed propagator

in one of the lines 2, · · · n , and propagators P on all other lines. As before, when we

combine the contributions from different Feynman diagrams of type (a), there are pairs

of identical diagrams11 with collapsed s- and t-channel propagators. As collapsed s- and

t-channel diagrams differ in sign, they again cancel pairwise.

The analysis of case (b) is similar, the only difference being that Q never comes back

to the original propagator at the end of the manipulations. The terms which arise from

manipulating the QΩ part of the commutator leave behind diagrams with one collapsed

propagator on one side of the diagram. The terms which arise from manipulating the −ΩQ

part of the commutator leave behind diagrams with one collapsed propagator on the other

side of the diagram. Again, when we combine the contributions from all the Feynman

diagrams of type (b), the diagrams involving collapsed propagators cancel pairwise.

We have thus shown that the commutator term [Q,Ω] in propagator 1 in both cases

(a) and (b) does not contribute to the amplitude. Thus for each original Feynman diagram

we are left with one diagram, with the Siegel gauge propagator P on line 1 and the original

propagator P on all other lines.

We can now repeat the analysis by replacing propagator 2 in each diagram by the right

hand side of (3.7). The only difference from the previous analysis is that in each diagram

propagator 1 is now the Siegel gauge propagator. This does not affect our argument, how-

ever, since the Siegel gauge propagator P , just like P, satisfies the relations (3.4) and (3.5),

i.e. {
Q,P

}
= 1 . (3.10)

Thus at the end of this process we are left with a sum of diagrams with propagators 1

and 2 replaced by Siegel gauge propagators. Iterating this procedure, we can replace all

propagators by Siegel gauge propagators.

Finally we turn to the external states. If B(1) is a linear combination of bn’s with n ≥ 0,

as in the case of Schnabl gauge, then it is possible to choose the cohomology elements to

be the same as the ones used in the Siegel gauge, ı.e. vertex operators of the form cV

where V is a dimension 1 matter primary operator. In general we need to choose different

representatives of the BRST cohomology in Siegel gauge and a linear b-gauge. However,

since we have already proven decoupling of BRST exact states, we can replace each of

the external states in the linear b-gauge by the representative of the corresponding BRST

cohomology class in the Siegel gauge without changing the amplitude. This establishes that

all on-shell amplitudes in a general linear b-gauge are the same as those in Siegel gauge.

11This time we call two diagrams identical only if they have both identical topology and matching labels

on the internal propagators (collapsed or otherwise) and external lines.
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4. Conditions from consistent Schwinger representations of 1/L(g)

The formal manipulations of section 2 and section 3 require that we have a well-defined

inverse of the operator L(g) for every g, in the sense described in section 1. Indeed 1/L(g)

enters the expression for the propagator and various manipulations involving the propa-

gator, — e.g. in the proof of {Q,P} = 1. In this section we shall investigate under what

conditions the matrix elements of 1/L(g) encountered in the calculation of string field the-

ory amplitudes can be rigorously defined up to terms whose associated Riemann surfaces

are localized at the boundary of open string moduli space.

As a warm-up let us recall how regularization works in the Siegel gauge. The propa-

gator 1/L0 is defined as
1

L0
≡ lim

Λ0→∞

∫ Λ0

0
ds e−sL0 . (4.1)

Using the relation

L0

∫ Λ0

0
ds e−sL0 = 1 − e−Λ0L0 , (4.2)

we see that in order for
∫ Λ0

0 ds e−sL0 to give a proper definition of 1/L0 for Λ0 → ∞, the

matrix elements of e−Λ0L0 must vanish in this limit. Thus we must examine what happens

to the amplitudes when the propagator on a line is replaced by the operator e−Λ0L0. As

is familiar, in the presence of this operator the Feynman graph line represents a strip of

length Λ0 and width π. As Λ0 → ∞ the strip becomes infinitely long and the Riemann

surface degenerates. As long as the open strings propagating along this infinitely long strip

carry positive conformal weight, this contribution can be safely ignored.

Following the same strategy we try to represent 1/L(g) as
∫∞

0 ds e−sL(g) , and then

regulate the upper limit of integration over the Schwinger parameter s using a cutoff Λ(g):

1

L(g)
≡ lim

Λ(g)→∞

∫ Λ(g)

0
ds e−sL(g) . (4.3)

Now we have

L(g)

∫ Λ(g)

0
ds e−sL(g) = 1 − e−Λ(g)L(g) . (4.4)

Thus in order that (4.3) gives a proper definition of 1/L(g) we need to ensure that in the

Λ(g) → ∞ limit the e−Λ(g)L(g) term on the right hand side of (4.4) has vanishing matrix

element between any pair of states which arise in the analysis of the Feynman amplitudes of

string field theory. Recalling the analysis in the Siegel gauge, we can easily anticipate that

in order to prove the existence of 1/L(g), we need to ensure that insertion of an operator

e−Λ(g)L(g) produces degenerate Riemann surfaces in the Λ(g) → ∞ limit.

Keeping this in mind, we shall now examine the effect of inserting an operator of

the form e−sL(g) into a correlation function and then study the result in the s → ∞
limit. For this we shall assume from the beginning that condition (2.55), v(ξ) = v(ξ̄),

is satisfied for the vector field v(ξ) associated with L(g) so that we can give a Riemann

surface interpretation to the matrix elements of e−sL(g) . We shall find that in the s → ∞
limit the insertion of e−sL(g) produces degenerate surfaces if the operators L(g) also satisfy
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Figure 10: Diagram illustrating gluing of surface states. In this diagram PA and PB denote the

boundaries created by the removal of the disks DA and DB, respectively. The maps hA(ξA) and

hB(ξB) embed the local coordinates ξA and ξB into the surfaces ΣA and ΣB, respectively. The

gluing of PA and PB to form the overlap 〈ΣA|ΣB〉 is induced by the identification ξA = −ξ−1

B
.

condition (1.15). Thus when these conditions are satisfied, eq. (4.3) gives a proper definition

of 1/L(g). In section 4.3 we will use this result to give a geometric interpretation of the

propagator P(g) for regular linear b-gauges. We shall show in section 5 that for these regular

gauge choices our results in section 3 hold rigorously, ı.e. we have {Q,P} = 1 leading to

decoupling of pure gauge states and the correct on-shell amplitudes are produced.

4.1 Gluing surface states with e−sL(g) insertions

We want to examine the matrix element of the operator e−sL(g) between two surface states.

The surface states 〈Σ| of interest to us are described by a Riemann surface Σ with an

arbitrary number of boundary components, with insertions of various vertex operators at

the boundary and integrals of antighost fields, BRST currents, and ghost number currents

in the bulk. The complete description of 〈Σ| also requires us to specify a marked point p

on the boundary and a map h(ξ) that takes the unit half-disk |ξ| ≤ 1, ℑ(ξ) ≥ 0 to a region

D around p on Σ, mapping ξ = 0 to p, the component of the real axis between −1 and 1

to the component of the boundary of D that is part of the boundary of Σ, and the unit

semicircle ξ = eiθ in the upper half-plane to the rest of the boundary component P of D.

In that case the state 〈Σ| is defined via the equation

〈Σ|φ〉 = 〈O h ◦ φ(ξ = 0)〉Σ (4.5)

for any Fock space state |φ〉. Here 〈 〉Σ denotes correlation function on the Riemann surface

Σ and O denotes collectively all insertions of external vertex operators and integrals of

antighost, BRST and ghost number currents in Σ. We shall assume that all the insertions

in Σ are outside the disk D; this is necessary in order that the surface state 〈Σ| has a

well-defined inner product with other surface states. In particular given two such surface
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states 〈ΣA| and 〈ΣB |, we compute their BPZ inner product 〈ΣA|ΣB〉 by removing the disks

DA and DB associated with the two surfaces, and then gluing ΣA − DA with ΣB − DB

along the new boundary components PA and PB , — generated by the removal of DA and

DB — via the map

ξA = −ξ−1
B . (4.6)

The result is a correlation function of the operators OA and OB on a new Riemann surface

obtained by gluing ΣA and ΣB by the procedure described above (see figure 10).

We now turn to the expression of interest:

〈ΣA| e−sL(g) |ΣB〉 . (4.7)

The goal of our analysis is to show that the operator insertion can be described as the

insertion of a strip-like domain R(s) to the Riemann surface that represents the overlap

〈ΣA|ΣB〉.

4.1.1 The strip domain R(s)

Let us denote the vector field associated with L(g) by v(ξ). This vector field generates a

flow fs(ξ) through the differential equation12

d

ds
fs(ξ) = −v

(
fs(ξ)

)
, fs=0(ξ) = ξ . (4.8)

We assume that v(ξ) is analytic in some neighborhood of the unit circle |ξ| = 1 and satisfies

condition (1.15). This means that

v⊥(ξ) ≥ r for |ξ| = 1 for some r > 0 , v⊥(ξ) ≡ ℜ
(
ξ̄v(ξ)

)
. (4.9)

Geometrically, v⊥(ξ) represents the radial component of the vector field v(ξ), and (4.9)

states that v(ξ) is directed outwards at every point on the unit circle. This condition,

together with (4.8), implies that

∂s

∣∣∣fs

(
eiθ
)∣∣∣ < 0 , at s = 0 , 0 ≤ θ < 2π . (4.10)

We do not expect the flow fs(ξ) to be well defined for all ξ and arbitrarily large s; if the

vector field v(ξ) has poles, the function fs(ξ) will in general have branch cuts. But the

analyticity of the vector field in a neighborhood of the unit circle together with (4.10)

implies that there is some s0 > 0 such that fs(e
iθ) is well defined and one to one for

0 ≤ s < s0. Furthermore (4.10) shows that fs(e
iθ) is inside the unit circle for s = 0+.

Eq. (4.9) guarantees that the flow (4.8) is directed inwards when fs(e
iθ) is on the unit

circle. Therefore once fs(e
iθ) is inside the unit circle it must stay inside as we increase s

as long as the flow is non-singular. Thus we have
∣∣∣fs

(
eiθ
)∣∣∣ < 1 for 0 < s < s0 , 0 ≤ θ < 2π . (4.11)

12This differential equation is equivalent to exp(−sv(ξ)∂ξ)ξ = fs(ξ). This relation also yields the so-called

Julia equation v(fs(ξ)) = v(ξ)∂ξfs(ξ).
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Furthermore the reality condition in (1.16) together with (4.8) tells us that fs(ξ) is sym-

metric under reflection about the real axis as well as about the origin:

fs(ξ) = fs(ξ̄), fs(−ξ) = −fs(ξ) for 0 ≤ s < s0 . (4.12)

This in particular implies that fs(ξ) is real for real ξ. Furthermore since fs(e
iθ) is well

defined and one to one for 0 ≤ s < s0, it must lie in the upper half plane for 0 ≤ θ ≤ π.

For s = 0, (4.7) reduces to 〈ΣA|ΣB〉 and can be represented geometrically by gluing

the local coordinates on the surfaces ΣA and ΣB through the gluing relation ξAξB = −1.

As discussed earlier, this prescription glues the curve PA: ξA = eiθ on ΣA to the curve PB :

ξB = ei(π−θ) on ΣB. The effect of the operator insertion e−sL(g) is to deform the curve

ξA = eiθ into ξA = fs(e
iθ). Due to (4.11), this new curve lies within the unit disk of the

coordinate ξA; it is now glued with the curve ξB = ei(π−θ) by identifying the parameter θ

labelling the two curves. For the correlator 〈ΣA|e−sL(g |ΣB〉, the gluing condition is thus

deformed to f−1
s (ξA)ξB = −1, or equivalently

Gluing condition: ξA = fs

(
−ξ−1

B

)
. (4.13)

This corresponds to inserting an extra strip R(s) between the coordinate curves ξA = eiθ

and ξB = ei(π−θ) (0 ≤ θ ≤ π) on the surfaces. Indeed, in the ξA plane the region R(s) is

bounded by the curves

QA : ξA = eiθ, 0 ≤ θ ≤ π ,

QB : ξA = fs

(
eiθ
)
, 0 ≤ θ ≤ π ,

E1 : ξA = fβs(1), 0 ≤ β ≤ 1 ,

E−1 : ξA = fβs(−1), 0 ≤ β ≤ 1 . (4.14)

The boundary component PA of ΣA − DA is glued with the boundary QA of R(s) and

the boundary component PB of ΣB − DB is glued with the boundary QB of R(s). The

trajectory of the point ξA = 1 has been called E1 and the trajectory of the point ξA = −1

has been called E−1. Due to eq. (4.12) both E1 and E−1 lie along the real axis. This

information is shown in figure 11.

The gluing relation (4.13) may be simplified by noting that the differential equa-

tion (4.8) that determines the function fs(ξ) is solved by13

fs(ξ) = g−1(s+ g(ξ)) , (4.15)

where g(ξ) is a solution to the equation

dg

dξ
= − 1

v(ξ)
. (4.16)

While the form of fs(ξ) is not affected by the choice of integration constant in the solution

for g, it is convenient to require g to vanish at ξ = −1:

g(−1) = 0 . (4.17)

13Gluing in the frame defined by the function g has been discussed earlier in [15].
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Figure 11: Diagram illustrating the gluing pattern associated with 〈ΣA|e−sL(g) |ΣB〉. The operator

insertion effectively glues the shaded surface R(s) to the boundary components PA and PB. The

surface R(s) is displayed in the ξA frame.

Using (4.15) the relation (4.13) can be expressed as

Gluing condition: g(ξA) = s+ g
(
−ξ−1

B

)
. (4.18)

This suggests that the piece of surface added by e−sL(g) is most conveniently represented

in a coordinate frame w, which is related to ξA and ξB through the identifications

w = g(ξA) , w = s+ g(−ξ−1
B ) . (4.19)

These identifications are compatible with the gluing relation (4.18). Under the map g(ξ),

we obtain a new conformal presentation of the domain R(s) and of the curves QA, QB , E1,

and E−1 that bound it. To describe this we introduce the curve γ describing the map

under g of the half-unit circle:

γ(θ) ≡ g(eiθ) , 0 ≤ θ ≤ π . (4.20)

The curve γ will play a prominent role in our analysis. Indeed the curves (4.14) in the ξA
plane are mapped by g to

QA : w = g
(
eiθ
)

= γ(θ) 0 ≤ θ ≤ π ,

QB : w = g
(
fs

(
eiθ
))

= s+ g
(
eiθ
)

= s+ γ(θ) 0 ≤ θ ≤ π ,

E1 : w = g(fβs(1)) = βs+ g(1) = βs+ γ(0), 0 ≤ β ≤ 1 ,

E−1 : w = g(fβs(−1)) = βs+ g(−1) = βs, 0 ≤ β ≤ 1 . (4.21)

We have made repeated use of (4.15) at various steps in (4.21). Thus the domain R(s)

in the w coordinate system is bounded by the curves QA = γ, QB = γ + s and the two

horizontal line segments E1 and E−1 that connect the endpoints of the curves QA and QB .

We impose open string boundary conditions on E1 and E−1. This surface has been shown

schematically in figure 12.

So far in our analysis we have restricted s to be in the range 0 ≤ s < s0 (recall

(4.11)). The reason is that the curve fs(e
iθ) will typically fail to exist for sufficiently large
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Figure 12: Diagram illustrating 〈ΣA|e−sL(g) |ΣB〉 with the surface R(s) displayed in the w frame.

The boundaries QA and QB of R(s) are described by the curves w = γ(θ) and w = s+ γ(θ), and

the horizontal boundaries correspond to ℑ(w) = 0 and ℑ(w) = g(1).

s whenever the vector field v(ξ) has singularities inside the unit disk. This, we claim, is

only a coordinate problem — the coordinate frame ξA is not suitable to describe sufficiently

large deformations. Instead, as we will explain, we can use the w = g(ξ) frame that proved

useful above to describe arbitrarily large deformations.

Indeed, to extend our result to arbitrary s > 0 let us first show that if e−sjL(g) is repre-

sented by the surface R(sj) for j = 1, 2 then e−s1L(g) e−s2L(g) = e−(s1+s2)L(g) is represented

by the surface R(s1 + s2). In other words, the surfaces R(s1) and R(s2) glue nicely to

form a longer surface R(s1 + s2). This follows immediately from the fact that the gluing

curve γ + s1 in the w1 frame associated with R(s1) is identical, up to a translation, to the

gluing curve γ in the w2 frame associated with R(s2). Thus the surfaces join smoothly to

form a longer surface R(s1 + s2) in a frame w12 which is related to w1 and w2 through the

simple identifications w12 = w1 and w12 = w2 + s1. Clearly, we can iterate this procedure

and build a strip of arbitrary length s by smoothly joining short strips of length smaller

than s0. Thus the operator e−sL(g) indeed corresponds to the insertion of the surface R(s)

even for arbitrarily large s.

4.1.2 Properties of the sewing curve γ

We shall now prove some general properties of the curve γ(θ) = g(eiθ) which describes the

ragged edge QA (and, by translation, QB) of the region R(s). Integrating eq. (4.16) along

the unit circle ξ = eiθ and noting that the boundary condition (4.17) means that γ(π) = 0,

we find

γ(θ) = g
(
eiθ
)

= −
∫ θ

π

idθ′
eiθ

′

v (eiθ
′

)
=

∫ π

θ

dθ′
i

u(θ′)
, (4.22)

where

u
(
θ′
)

= e−iθ′v
(
eiθ

′
)

and ℜ(u(θ′)) = v⊥(eiθ
′

) ≥ r , (4.23)

as a consequence of equation (4.9). Short calculations then give bounds on the real and

imaginary parts of i/u(θ′):

0 < ℑ
( i

u(θ′)

)
≤ 1

r
,

∣∣∣ℜ
( i

u(θ′)

) ∣∣∣ ≤ 1

2r
. (4.24)
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Equations (4.22) and (4.24) lead to several important conclusions. First of all we have

∂θℑ (γ(θ)) = −ℑ
( i

u(θ)

)
< 0 , (4.25)

ı.e. ℑ (γ(θ)) is a monotonically decreasing function of θ. Thus the curve γ never intersects

itself. Moreover, the surface R(s), which is swept out by horizontal translations of γ is

well defined in the w frame. Second we have

0 < ℑ (γ(0)) =

∫ π

0
dθ′ ℑ

( i

u(θ′)

)
≤ π

r
. (4.26)

This together with ℑ(γ(π)) = 0 shows that the region R(s) has a finite and non-vanishing

vertical width. Therefore we can always rescale v(ξ) by a positive real number to make

this width π:

ℑ(γ(0)) = π . (4.27)

Clearly such a rescaling affects neither the gauge condition
∮
dξv(ξ)b(ξ)|ψ(g)〉 = 0 nor the

requirements (2.65) on the coefficients of v. We shall assume from now on that this has

been done, and the r in the bound (4.9) refers to the v(ξ) normalized in this manner.

Eq. (4.26) then gives

0 < r ≤ 1 . (4.28)

Finally it follows from eqs. (4.22) and (4.24) that the net horizontal spread d in the curve

γ(θ) is bounded from above:14

d ≡ ℜ (γ(θ))|max − ℜ (γ(θ))|min ≤ π

2r
. (4.29)

Additional properties of the curve γ arise from use of the conditions v(ξ̄) = v(ξ) and

v(−ξ) = −v(ξ) in (2.64). Indeed we readily see from the definition (4.23) that

u(π − θ) = −eiθv(−e−iθ) = eiθv(e−iθ) = e−iθv(eiθ) = u(θ) . (4.30)

We can use this to show that the real part of γ(0) vanishes:

ℜ(γ(0))=ℜ
∫ π

0
dθ′

i

u(θ′)
=

1

2

∫ π

0
dθ′

(
i

u(θ′)
− i

u(θ′)

)
=

1

2

∫ π

0
dθ′
(

i

u(θ′)
− i

u(π − θ′)

)
= 0 .

(4.31)

We therefore conclude that

γ(0) = iπ . (4.32)

14Note that while the condition on v⊥ given in (4.23) is sufficient for getting a finite vertical width and

finite horizontal spread, it may not be necessary. For example if v(ξ) has isolated zeroes on the unit circle

such that the integral
R θ
dθ′eiθ′

/v(θ′) is finite for every θ, we may still be able to get a curve γ(θ) with all

the desirable properties. Though vector fields of this type cannot be analytic at these isolated zeros, they

may still correspond to consistent gauge choices. Gauges in which B(g) is the zero mode of the antighost in

the coordinate frame of ’wedge states’ are of this kind. We thank Leonardo Rastelli for discussions on this

point.
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(a) (b)

Figure 13: (a) The strip domain R(s) in the Bλ gauge for λ = 0.1 and s = 2 . (b) The curve

γ(θ) in the Bλ gauge for λ = 1, 0.1, 0.01, 0.001, 0.0001, and 0. The latter, which corresponds to

the Schnabl gauge, is singular at θ = π/2. The vertical line along the ℑ(w) axis corresponds to

λ = ∞, ı.e. the Siegel gauge.

It also follows from (4.30) and (4.22) that

γ(θ) =

∫ π

θ

dθ′
−i

u(π − θ′)
=

∫ 0

π−θ

dθ′
i

u(θ′)
=

∫ π

π−θ

dθ′
i

u(θ′)
+

∫ 0

π

dθ′
i

u(θ′)
. (4.33)

The last integral on the right-hand side is equal to −γ(0) = −iπ, so we get

γ(θ) = γ(π − θ) − iπ → γ(θ) − iπ2 = γ(π − θ) − iπ2 . (4.34)

This relation implies that the curve γ is reflection symmetric about the horizontal line

through w = iπ/2 that bisects the strip R(s).

We note that for BPZ invariant vector fields the net horizontal spread d defined in (4.29)

actually vanishes. Indeed, for a BPZ invariant vector that is also odd under ξ → −ξ one has

v(ξ) = −ξ2v(−1/ξ) = ξ2v(1/ξ) → v
(
eiθ
)

= e2iθ v
(
e−iθ

)
. (4.35)

It follows from this and v(ξ̄) = v(ξ) that u(θ) is actually real:

e−iθv
(
eiθ
)

= eiθ v
(
e−iθ

)
= e−iθv (eiθ) . (4.36)

Back in (4.22) we see that γ(θ) is a curve along the imaginary axis — a vertical line segment

from iπ to 0. The simplest example of a BPZ even gauge condition is that of Siegel gauge,

where v(ξ) = ξ and consequently u(θ) = 1 and γ(θ) = i(π−θ). More general BPZ invariant

gauges correspond to γ’s which define different parameterizations of the vertical segment

from iπ to 0. The surface R(s) is a rectangle for all BPZ invariant gauges that satisfy (1.16).

4.1.3 Coordinate frames and examples

Given a vector field v(ξ) that defines a gauge-fixing operator B(g) by

B(g) =

∮
dξ

2πi
v(ξ)b(ξ) , (4.37)
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we introduce two related coordinate frames. If we define f(ξ) via

f(ξ)

f ′(ξ)
= v(ξ) , (4.38)

then in the z = f(ξ) frame B(g) is the zero mode b0 of the antighost field. Indeed, we have

f ◦ B(g) =

∮
dξ

2πi
v(ξ) f ◦ b(ξ) =

∮
dξ

2πi
v(ξ)

(
dz

dξ

)2

b(z) =

∮
dz

2πi
zb(z) = b0 in z-frame.

(4.39)

We also have the w = g(ξ) frame, defined through

dg

dξ
= − 1

v(ξ)
. (4.40)

Perhaps not surprisingly, B(g) (the g subscript is for ghost number and has nothing to do

with the function g) is the mode (−b−1) in the w-frame:

g ◦ B(g) =

∮
dξ

2πi
v(ξ) g ◦ b(ξ)=

∮
dξ

2πi
v(ξ)

(
dw

dξ

)2

b(w)=−
∮

dw

2πi
b(w) =−b−1 in w-frame.

(4.41)

Similarly the operator −L(g) is mapped to the mode L−1 in the w-frame — the Virasoro

mode associated with translations. From this point of view it is not surprising that the

operator e−sL(g) is represented by a strip of length s in the w coordinate system.

The relation between w = g(ξ) and z = f(ξ) follows readily from eq. (4.38) and (4.40):

dg

dξ
= −f

′(ξ)

f(ξ)
→ g(ξ) = − ln f(ξ) + const. (4.42)

In our conventions g(−1) = 0 so we have

g(ξ) = − ln

[
f(ξ)

f(−1)

]
, z = f(ξ) = f(−1)e−g(ξ) = f(−1)e−w . (4.43)

It is worth noting that, in more generality, the operator ±B(g) (±L(g)) is the zero mode b0
(L0) in the coordinate z̃ related to the ξ and w frames through

z̃ = z̃0e
∓w = z̃0e

∓g(ξ) . (4.44)

for an arbitrary constant z̃0.

We conclude this subsection with some examples. For the Bλ gauges the function f(ξ)

associated with the vector vλ(ξ) is given by fλ(ξ) of eq. (2.83). Using (4.43) we thus have

g(ξ) = − ln

[
tan−1

(
e−λξ

)

tan−1 (−e−λ)

]
. (4.45)

The left and right boundaries QA and QB of R(s) are obtained as the plot of g(eiθ) and

s+g(eiθ) for 0 ≤ θ ≤ π. These plots are shown in figure 13. We also show the curve γ(θ) for

various values of the λ parameter. As we can see, the horizontal spread of the curve γ(θ)
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increases as λ decreases. In particular for λ = 0, ı.e. for Schnabl gauge, ℜ(g(i)) = −∞, and

the horizontal spread is infinite. This shows that the strip domain R(s) becomes singular

in the w frame in this limit.

It is instructive to consider the BPZ even gauge-fixing operators

B(g) = Bλ +
(
Bλ
)⋆

. (4.46)

Since the vector vλ satisfies all constraints for a regular gauge, so does the dual vector

(vλ)⋆ and, by linearity, the sum vλ + (vλ)⋆. This means that the BPZ even gauges (4.46)

are regular gauges for λ > 0. As explained before, the BPZ invariance implies that the

horizontal spread of the curve γ vanishes for all λ > 0. For λ = 0, 1/u(θ) is proportional to

1/|θ− π
2 | near θ = π/2. As a result ℑ(γ(θ)) computed from (4.22) diverges logarithmically

as θ → π/2. Thus the curve γ(θ) is again singular and the width of the strip R(s) diverges.

A strip of divergent width cannot be normalized to width π by a finite rescaling of the gauge

condition (4.46). On the other hand, a normalization to width π is possible for all λ > 0,

in which case the curve γ is simply the vertical line segment from iπ to 0, independent of

λ. If we take the λ → 0 limit of the curve γ(θ) with this normalization, γ approaches the

singular parametrization given by

γ(θ) = iπ for 0 ≤ θ <
π

2
,

γ(θ) = 0 for
π

2
< θ ≤ π .

(4.47)

Thus we are again lead to the conclusion that the geometric interpretation of the gauge

condition (4.46) breaks down in the limit λ→ 0.

4.2 Degeneration and the s→ ∞ limit

Using the general results we have obtained concerning the region R(s) we can achieve our

main goal, ı.e. to show that in the limit s → ∞ the Riemann surface associated with the

matrix element 〈ΣA|e−sL(g) |ΣB〉 is a degenerate Riemann surface as long as (1.16) holds.

However for this we need to recall some facts about degeneration of Riemann surfaces.

Consider a pair of Riemann surfaces Σ1 and Σ2 with boundaries and a pair of local

coordinates η1 and η2 around boundary punctures p1 ∈ Σ1 and p2 ∈ Σ2. As usual, the

coordinates ηi, i = 1, 2 are restricted to the canonical upper-half disks |ηi| ≤ 1, ℑ(ηi) ≥ 0,

and the coordinate maps take the boundary ℑ(ηi) = 0 of the half disk to the boundary of Σi

around the puncture pi. The discussion that follows applies without significant modification

to the case when both punctures lie on a single Riemann surface as long as the images of

the unit upper-half disks |ηi| ≤ 1, ℑ(ηi) ≥ 0 do not overlap, so we will continue to focus

on the case when we have two surfaces.

We can sew together the surfaces Σ1 and Σ2 with a sewing parameter t ∈ R:

η1 η2 = −t , 0 < t ≤ 1 . (4.48)

As usual, this sewing can be done by removing from Σ1 and Σ2 the images of the half

disks |ηi| ≤
√
t and gluing the newly created boundaries. The sewn surface Σ(t) is said
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Figure 14: Diagrams illustrating the proof of degeneration of the surface R(s) in the limit s→ ∞.

to approach degeneration as t→ 0. Degenerations that arise from sewing are called stable

degenerations. Sewing also provides a compactification of the moduli space t ∈ (0, 1] by

the inclusion of the boundary point provided by the nodal surface Σ(t = 0).

Having defined degeneration precisely we now want to show that the composite surface

ΣAB(s) built in the previous subsection by gluing the strip R(s) to the surfaces ΣA and ΣB

approaches degeneration in the limit s→ ∞. The strategy is straightforward: we introduce

two surfaces Σ̃A and Σ̃B with local coordinates ηA and ηB such that the composite surface

ΣAB(s) arises by sewing ηA ηB = −t with some suitable value of t that depends on s.

Moreover, s→ ∞ must imply t→ 0.

The surface Σ̃A is defined by gluing the edge QA of the strip R(s) to PA, as before, but

now letting the strip become of infinite length (see figure 14). This introduces a puncture

at the infinite end of the strip. On the strip we mark a dotted vertical line immediately to

the right of the ragged curve QA. The coordinate ηA around the puncture is defined by the

canonical map that takes the semi-infinite strip to the right of the dotted vertical line to

the half-disk |ηA| ≤ 1, ℑ(ηA) ≥ 0. If the strip is described with a yA coordinate in which

the dotted line goes from yA = 0 to yA = iπ, the map is ηA = −e−yA or yA = ln(−η−1
A ).

The surface Σ̃B is defined analogously: we glue the edge QB of R(s) to PB , as before, and

let the strip become of infinite length. This time ηB is defined by the canonical map from

the semi-infinite strip to the left of the dotted line to the upper half disk (figure 14), ı.e.

ηB = eyB and thus yB = ln(ηB). Note that the coordinates yA and yB differ from the w

coordinate introduced earlier by a simple shift.
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Consider now the sewing of Σ̃A and Σ̃B with

ηAηB = −t , 0 < t ≤ 1 . (4.49)

It can be performed using cutting curves |ηA| = |ηB | =
√
t and proceeds as follows. The

curve |ηA| =
√
t corresponds to a vertical line on the Σ̃A strip a distance −1

2 ln t to the right

of the dotted vertical line in the yA frame. We amputate the surface at this line. Similarly,

the curve |ηB | =
√
t corresponds to a vertical line on the Σ̃B strip a distance −1

2 ln t to

the left of the dotted vertical line in the yB frame. We amputate this surface at this line.

The gluing of these two amputated surfaces is natural, because the gluing relation (4.49) in

terms of the coordinates yA and yB takes the simple form yA = yB − ln t. We thus obtain a

surface in which the distance between the dotted vertical lines is − ln t. This surface is, in

fact, the composite surface ΣAB(s) built by gluing the strip R(s) to the surfaces ΣA and

ΣB with a value of s given by

s = − ln t+ d , (4.50)

where d denotes the horizontal spread of the curve γ, as defined in (4.29). This represents

our composite surface ΣAB(s) (with s ≥ d) as the result of sewing two auxiliary surfaces Σ̃A

and Σ̃B via eq. (4.49). Furthermore we see from (4.50) that the limit s → ∞ corresponds

to t → 0, and hence ΣAB(s) approaches degeneration as s → ∞. This proves the desired

result.

We have thus shown that, as long as (1.16) holds, the Riemann surface associated with

the matrix element 〈ΣA|e−sL(g) |ΣB〉 degenerates in the limit s→ ∞. We can also consider

matrix elements with products of multiple operators e−siL(gi) . Again, if (1.16) holds,

〈ΣA|
∏

i

e−siL(gi) |ΣB〉 (4.51)

with si ≥ 0 represents a degenerate surface if any of the si → ∞. It is clear that the product

can also contain an arbitrary number of factors e−s0L0 , because the vector field v(ξ) = ξ

associated with L0 satisfies (1.16). Furthermore it should be noted that this argument is

independent of what operators OA and OB are inserted on the Riemann surfaces ΣA and

ΣB since these do not affect the moduli of the surface.15 Finally the result quoted above

also holds if we insert local operators (or line integrals of local operators) in between the

e−siL(gi) operators in (4.51).

One of the most interesting properties of Siegel gauge is that amplitudes exhibit off-

shell factorization. We can use the above construction to understand why this property is

so hard to attain and, apparently, occurs only in Siegel gauge. Geometrically, the general

linear b-gauge propagators add strips of the form R(s).16 When the strips become infinitely

15Under certain circumstances insertions of BRST operators could make the integrand a total derivative,

and hence, if we wish, we can express the result in terms of conformal field theory correlation functions at

the boundaries of the region of integration. However if the whole region of integration is pushed towards

the degeneration limit, the boundaries of the region of integration also reach the degeneration limit.
16The full propagator inserts two strips corresponding to e−sL(g) for two different ghost numbers g,

as explained in section 4.3, but it seems to us that taking this into account cannot fix the geometrical

obstructions to off-shell factorization described below.
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long the amplitude will factorize. We showed above that the insertion of a strip R(s) to the

surfaces ΣA and ΣB with local coordinates ξA and ξB can be viewed as standard sewing of

the surfaces Σ̃A and Σ̃B, using their local coordinates ηA and ηB . When the strip becomes

infinitely long, the factorization occurs with off-shell ingredients the surfaces Σ̃A and Σ̃B.

On the other hand, the lower-order off-shell amplitudes in this theory are defined by the

original surfaces ΣA and ΣB . Off-shell factorization thus requires the conformal identity

of ΣA and Σ̃A as well as the conformal identity of ΣB and Σ̃B . In particular, this requires

that the local coordinates ξA and ηA be the same. But this requirement determines the

gauge completely — only Siegel gauge satisfies this condition. To see this, let us recall

the coordinate yA introduced above. It differs from the w coordinate by a simple shift:

yA = w + y0. The requirement ηA = ξA for off-shell factorization can then be written as

ηA = −e−yA = −e−w−y0 = −e−g(ξA)−y0 = ξA . (4.52)

The boundary condition g(−1) = 0 implies y0 = 0 and thus

g(ξ) = − ln ξ + iπ . (4.53)

From
dg

dξ
= − 1

v(ξ)
(4.54)

it then follows that v(ξ) = ξ. So we are led to the conclusion that Siegel gauge is the only

regular linear b-gauge which exhibits off-shell factorization.

4.3 Schwinger parametrization of the propagator

Before concluding this section we shall give a geometric description of the propagator using

the geometric description of 1/L(g) developed in this section. In order to regulate the linear

b-gauge propagator P we must regulate the ingredients shown in (2.36). We use

B(g)

L(g)
=

∫ Λ(g)

0
ds(g) B(g) e

−s(g)L(g) . (4.55)

where we have introduced a large cutoff Λ(g) for the Schwinger parameter s(g). Then the

regulated propagator P(g) at ghost number g can be written as

P(g) =
B(g−1)

L(g−1)
Q

B(g)

L(g)
= B(g−1)

[∫ Λ(g−1)

0
ds(g−1)

∫ Λ(g)

0
ds(g) e

−s(g−1)L(g−1) e−s(g)L(g)

]
QB(g) .

(4.56)

Geometrically the operators of the type e−s(g)L(g) insert strip-like domains R(g)(s(g)) as

discussed in section 4.1. Thus the operator e−s(g−1)L(g−1)e−s(g)L(g) can be viewed as the

insertion of a surface created by the gluing of R(g)(s(g)) to R(g−1)(s(g−1)). As long as the

vector fields associated with B(g) satisfy the conditions (1.16) we can set the upper limits

of integration Λ(g) and Λ(g−1) in (4.56) to infinity without encountering any subtlety. To

complete the propagator (4.56), antighost and BRST insertions have to be added to the

surface, and the Schwinger parameters s(g−1) and s(g) have to be integrated over.
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Figure 15: Gluing of surfaces R(s) and R⋆(s⋆) for a geometric interpretation of the propagator

P on even ghost number states in alternating gauge.

A particular simple geometric interpretation can be given to the propagator of alter-

nating gauge,

P =
B(1)

L(1)
Q

B⋆
(1)

L⋆
(1)

Π+ +
B⋆

(1)

L⋆
(1)

Q
B(1)

L(1)
Π− . (4.57)

In this case we only need two types of surfaces, namely the surface R(s) associated with

L(1) and the surface R⋆(s⋆) associated with L⋆
(1). Denoting the vector field associated with

L(1) by v, we can derive the following relation between the boundary curves γ and γ⋆ of

R and R⋆:

γ⋆(θ) =

∫ π

θ

dθ′
i

e−iθ′v⋆ (eiθ′)
=

∫ π

θ

dθ′
−i

eiθ′v (−e−iθ′)
= −

∫ π

θ

dθ′
−i

eiθ
′

v (eiθ
′

)
= −γ(θ) ,

(4.58)

where we used (1.16) and the definition of v⋆ given in eq. (2.58). This shows that the

curve γ⋆ is the reflection of the curve γ around the imaginary axis of the w-plane. The

propagator P in alternating gauge is built from surfaces obtained by gluing R⋆(s⋆) to R(s).

For definiteness, let us focus on the surface associated with the propagator acting on the

subspace of states of even ghost number g. This requires gluing the right end of R(s) to

the left end of R⋆(s⋆), as shown in figure 15(a). We notice that the surfaces R and R⋆

glue naturally in the w-frame17 if we reflect R⋆ around the imaginary axis, as depicted

in figure 15(b). This reflection is not necessary if the curve γ parameterizes a precisely

vertical line segment. In this case the surfaces R and R⋆ have the same shape, and the

geometric interpretation is simply a longer strip R(s + s⋆) = R⋆(s + s⋆). This, of course,

describes BPZ invariant gauges, in which case the propagator could have been written more

suggestively as P = B(1)/L(1) to begin with.

5. On-shell amplitudes revisited

In this section we shall use the results of section 4 to show that the formal results of section 3

17In Schnabl gauge, the surfaces R and R⋆ glue most naturally in the ”sliver frame” z̃ = −e−w where the

edges QA and QB become vertical lines and the geometric interpretation of e−sLe−s⋆L⋆

described in [31]

can be recovered.
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are not affected by the regularization of the propagator as long as the conditions (1.16) are

satisfied.

5.1 Decoupling of trivial states

We shall first examine the corrections to the relation {Q,P} = 1 which arise when we reg-

ulate the propagator, and show, using the results of the previous section, that these correc-

tions can be ignored if the conditions (1.16) hold. The regulated Schwinger parametrization

of the operators 1/L(g) introduced above in (4.55) results in the relation

{
Q,

B(g)

L(g)

}
= 1 − e−Λ(g)L(g) . (5.1)

Use of this identity, eq. (2.36), and P =
∑

g P(g)Πg quickly gives

{Q,P} = 1 −
∑

g

{
e−Λ(g)L(g) + e−Λ(g−1)L(g−1)Q

B(g)

L(g)
+

B(g)

L(g)
Qe−Λ(g+1)L(g+1)

}
Πg . (5.2)

In the proof of decoupling, Q is moved through the diagram leaving factors of one from the

commutators with P. Those factors represent collapsed propagators whose contribution

was analyzed in section 3. In (5.2) we have additional operators appearing on the right

hand side, and we need to argue that the contribution from these additional terms vanishes.

Using the propagator (2.36) and the result of section 4 that the insertion of e−sL(g) can be

represented geometrically as the insertion of a strip, we can represent the contribution from

a given Feynman diagram as integrals of appropriate correlation functions on a Riemann

surface. As a result in any Feynman diagram each of these additional terms discussed

above is sandwiched between two surface states built by the Feynman diagrams. As we

stated when introducing (4.7), the surface states can carry all kinds of external states,

line integrals, or even additional sewing operations. Our task is to show that the matrix

elements of the additional operators on the right-hand side of (5.2) vanish between any

pair of surface states.

The first operator that appears inside the braces in (5.2) is exactly of the type discussed

in (4.7), so its contributions can be ignored if L(g) satisfies the conditions (4.9). The second

operator is of the form
∫ Λ(g)

0
dt e−Λ(g−1)L(g−1)QB(g)e

−tL(g) . (5.3)

This term fits the general structure described in section 4 and hence as Λ(g−1) → ∞ we

get degenerate surfaces. Note that this happens for any non-negative value of t. If we were

to move the BRST operator to the right of B(g) one can get extra terms that reduce the

integral over t to the endpoints, but even then, those surfaces are still degenerate. The

third operator within braces in (5.2) is of similar type and requires no new comments.

All in all, this shows that all the violations of the {Q,P} = 1 identity that arise from

regularization can be safely ignored and the decoupling of trivial states will hold.
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5.2 Correct on-shell amplitudes

Let us now examine in detail how a regulated linear b-gauge propagator and a regulated

Siegel gauge propagator differ by Q-trivial terms plus other contributions. We define

∆P ≡ P − P , (5.4)

as well as

Ω ≡ P ∆P . (5.5)

With unregulated propagators, we would readily find that [Q,Ω ] = ∆P, the desired state-

ment that the difference of propagators is Q-trivial. Using the regulated propagators we

now find that

[Q,Ω ] =
(
1 − e−Λ0L0

)
∆P − P {Q, ∆P } . (5.6)

A short computation using (5.2) gives

{Q,∆P} =
∑

g

{
e−Λ0L0 − e−Λ(g)L(g) − e−Λ(g−1)L(g−1)Q

B(g)

L(g)
−

B(g)

L(g)
Qe−Λ(g+1)L(g+1)

}
Πg .

(5.7)

This, together with (5.6) now gives

(
1 − e−Λ0L0

)
∆P = [Q,Ω] + ∆Λ , (5.8)

where

∆Λ =
b0
L0

∑

g

{
e−Λ0L0 − e−Λ(g)L(g) − e−Λ(g−1)L(g−1)Q

B(g)

L(g)
−

B(g)

L(g)
Qe−Λ(g+1)L(g+1)

}
Πg .

(5.9)

This means that we can write (5.8) as

∆P = [Q,Ω′] + ∆′
Λ , with Ω′ =

(
1 − e−Λ0L0

)−1
Ω, ∆′

Λ =
(
1 − e−Λ0L0

)−1
∆Λ . (5.10)

We now argue that the terms in ∆′
Λ give degenerate surfaces so that their contributions

can be ignored. First consider just ∆Λ, as given in (5.9). The operators within braces

give by now familiar degenerate contributions. The factor of 1/L0 in front does not change

this, as can be realized by introducing one more Schwinger parameter to represent this

factor. Finally the factor of (1 − e−Λ0L0)−1 which turns ∆Λ into ∆′
Λ can be written as∑∞

n=0 e
−nΛ0L0 and also does not change the conclusion. The key fact in this whole analysis

is that each operator that appears in ∆′
Λ contains at least one exponential whose argument

contains a Λ parameter that goes to infinity, multiplying an admissible L(g) operator. This

produces an infinite strip. Exponentials without Λ parameters produce regular surfaces as

long as the corresponding vector fields satisfy (1.16). Once we have an infinite strip, the

surface is degenerate and its contribution can be ignored. This completes our proof that

linear b-gauges which satisfy the constraints (1.16) give the correct on-shell amplitudes.

We would also like to point out that the convergence property of amplitudes with

e−sL(g) insertion for large s guarantees that the regularization ambiguities of the kind
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(a) (b)

Figure 16: The shape of R(s) in Schnabl gauge displayed in the frame (a) ew and (b) −e−w. In

(a) the boundary components QA and QB, which are glued to the surface states ΣA and ΣB, touch

at the fusion point F for all s. In (b) we recover the familiar picture where QA and QB are vertical

lines and the fusion point is at infinity.

encountered in [31] are absent for regular linear b-gauges. The ambiguous terms of [31]

contain one or more factor of e−Λ(g)L(g) and hence would vanish in the Λ(g) → ∞ limit. This

is of course consistent with the fact that regular linear b-gauges reproduce unambiguously

the correct on-shell amplitudes of string theory.

5.3 Projector gauges

Our analysis in the previous sections shows that in gauges which satisfy the condi-

tions (1.16) the Feynman amplitudes of string field theory reproduce correctly the on-shell

amplitudes of open string theory. Unfortunately this argument does not hold for projector

gauges since the insertion of e−Λ(g)L(g) into an amplitude does not in general localize the

contribution to the boundary of the moduli space in the limit as Λ(g) → ∞. To demon-

strate this, we shall choose the familiar Schnabl gauge but a similar analysis can be done

for any projector gauge of the type discussed below (2.76).

As described in figure 13(b) the region R(s) for Schnabl gauge looks singular in the w

frame since the real parts of the midpoints (θ = π/2) of the boundary components QA and

QB reach −∞. A better understanding of the situation is obtained by examining this region

in the z̃ = ew plane. This has been shown in figure 16(a).18 As can be seen from this figure,

the midpoints on the boundaries QA and QB fuse at a single point F , dividing the region

R(s) into two components. This can also be understood as follows. The z̃ coordinate is of

the general form (4.44), and thus −L(g) can be interpreted as the generator of rescalings L0

in the z̃ frame. As the fusion point F is the origin of the z̃-frame, the action of L(g) leaves

F invariant and therefore e−sL(g) fails to separate completely the boundary components QA

and QB of R(s). In the computation of 〈ΣA|e−sL(g) |ΣB〉, the boundaries QA and QB are

glued to the coordinate curves PA and PB of the Riemann surfaces ΣA and ΣB. The result

18For comparison, we also show the strip R(s) in figure 16(b) in the frame obtained from z̃ by the BPZ

map z̃ → −1/z̃. The surface R(s) appears as two semi-infinite vertical strips. Up to a constant rescaling,

this frame is the familiar sliver frame.
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is a correlation function on the surface ΣAB(s) in which the midpoints of the coordinate

curves of ΣA and ΣB remain fused for all values of s. Therefore the surface ΣAB(s) does

not in general exhibit open string degeneration in the limit s→ ∞.

The simplest example of this phenomenon occurs in the computation of the four-point

function in the Schnabl gauge: the matrix element of e−ΛLe−Λ⋆L⋆
between two three-string

vertices corresponds to the contribution from a finite point in the moduli space even for

arbitrarily large Λ, Λ⋆ as long as Λ and Λ⋆ are of the same order [31]. Since e−ΛL is

the boundary term that arises in the definition of 1/L, this shows that 1/L is not well

defined acting from the left on states of the form limΛ⋆→∞ e−Λ⋆L⋆ |A ∗ B〉 for a pair of

Fock space states |A〉, |B〉. Similarly 1/L⋆, acting from the right, is not well defined on

the BPZ conjugate of the above state. In the case of the four-point function the problem

can be resolved by suitable regularization of the upper limits of integration, treating L

and L⋆ symmetrically [31]. It remains to be seen whether the same regularization of the

propagator produces consistent higher point and/or loop amplitudes as well.

6. Discussion

In this paper we studied open string field theory in the class of gauges in which a linear

combination B(g) of the antighost oscillators annihilates the string field of ghost number g.

We derived the Feynman rules and showed that for a wide class of linear b-gauges the string

field theory amplitudes reproduce correctly the on-shell S-matrix elements at the tree and

the loop levels. Our analysis, however, does not work for all linear b-gauges, – certain

regularity conditions must be satisfied in order for it to work. In particular Schnabl gauge,

which has provided a geometric and algebraic framework to explicitly construct classical

solutions in open string field theory, fails to satisfy these regularity conditions.

Schnabl gauge has been known to be subtle for string perturbation theory for some

time. In particular the analysis of [31] shows that a consistent off-shell Veneziano ampli-

tude can be obtained only through a delicate regularization scheme. Higher n-point tree

amplitudes and loop amplitudes have not been studied, so there could be additional diffi-

culties there. Our analysis shows that these difficulties can be traced back to the difficulty

in defining the inverse of L(g) ≡ {Q,B(g)} that enters the definition of the propagator. The

usual representation of 1/L(g) in terms of an integral over a Schwinger parameter fails due

to a non-vanishing boundary term from the upper limit of integration. This in turn can be

traced back to the fact that the conformal transformation generated by L(g) in this gauge

does not move the open string midpoint. As a result, in the representation as an integral

over the Schwinger parameter, the insertion of 1/L(g) does not effectively separate the sur-

faces it connects even in the limit where the Schwinger parameter becomes large. Notwith-

standing these complications it is still possible that suitable regularization of the propagator

involving cut-offs on the Schwinger parameters and a prescription to take limits will render

the higher point functions at tree and/or loop level consistent. This deserves further study.

We constructed a one-parameter family of regular gauges which interpolates between

Siegel and Schnabl gauge. It would be interesting to see if this parameter can be used

to regularize Schnabl gauge. If this is possible, off-shell amplitudes in Schnabl gauge
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could be defined by taking the limit, as we approach Schnabl gauge, of the amplitudes

computed within this family. These results can then be compared to the off-shell Veneziano

amplitudes computed in [31, 30] with a different regularization prescription.

Another surprising feature of the Schnabl gauge found in [31] is that the off-shell

Veneziano amplitude does not exhibit off-shell factorization. We have explained this geo-

metrically and learned that only in Siegel gauge we expect off-shell factorization. In other

regular b-gauges off-shell factorization is expected to fail because as we attach a propagator

to the coordinate curve associated with a puncture the natural local coordinate induced by

the strip domain R(s) fails to agree with the original local coordinate.19 This is, however,

not a failure of the gauge choice. Despite being a desirable feature, off-shell factorization

is not a requirement we need to impose on a choice of gauge. The lack of off-shell factor-

ization both for Bλ gauges and for Schnabl gauge is consistent with our proposal to define

amplitudes in Schnabl gauge by taking the λ→ 0 limit.

Even if open string perturbation theory fails in Schnabl gauge, it does not by itself

signal any problem for the classical solutions constructed in this gauge since they satisfy

the complete set of open string field theory equations of motion. Nevertheless, it would

be interesting to obtain exact analytic solutions in gauges where perturbation theory is

well defined, like Siegel gauge. This will facilitate understanding open string perturbation

theory around the tachyon vacuum — in particular open string loop diagrams which are

expected to contain information about closed string theory. It will be interesting to see if

by making an appropriate gauge transformation we can convert Schnabl gauge solutions

into solutions in the family of regular gauges interpolating between the Schnabl gauge and

the Siegel gauge. This analysis may be facilitated by the existence of a continuous family of

gauges: we can now look for infinitesimal gauge transformations which convert a solution

in one gauge to another in a nearby gauge.

Regular linear b-gauges satisfy the consistency conditions required for a well defined

perturbation theory and our analysis provides an explicit geometric description of the

1/L(g) operator. Representing it as an integral of e−sL(g) over the Schwinger parameter s

we find that insertion of e−sL(g) into a correlation function inserts a strip into the Riemann

surface on which the correlator is being computed. Unlike the case in Siegel gauge, for

which the corresponding operator 1/L0 inserts rectangular strips, here the ends of the

strips which connect to the rest of the Riemann surface are ragged. For regular linear

b-gauges, the ends of the strip are parameterized by a continuous curve γ that satisfies the

following properties: (i) it is smooth, (ii) it has finite width, (iii) it has finite horizontal

spread, (iv) it is reflection symmetric about the horizontal line that bisects the strip, (v) it is

perpendicular to the open string boundaries, and, (vi) it does not intersect any horizontal

line more than once. These properties followed from our conditions on the vector field

associated with the gauge choice.

It would be interesting to see if consistent linear b-gauges arise with weaker conditions.

In particular, any vector field that results in a curve γ that satisfies the above properties

(ii)–(vi) but is only continuous as opposed to smooth, may be acceptable. This is plausible

19We thank Leonardo Rastelli for raising the question of off-shell factorization.
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because the strip domain is still well-defined and reaches open string degeneration for large

s. This class of gauges includes all regular linear b-gauges, but also includes gauges in which

the vector field associated with B(g) is not analytic in a neighborhood of the unit circle

and may even have zeros on the unit circle. Gauges associated with the so-called “wedge

states” are of this type. The corresponding curves γ are continuous but not smooth.

An important difference between a general linear b-gauge and the Siegel gauge is that

the propagator in the former gauge contains two 1/L(g) operators (of different ghost num-

bers) separated by an insertion of a BRST charge. Thus in the Riemann surface picture,

a propagator will be represented by a pair of strips separated by the line integral of the

BRST current. This general structure of the propagator, with two Schwinger parameters

and a BRST insertion in between, suggests that a new definition of open string amplitudes

may be possible. The usual Polyakov definition of open string amplitudes is closely related

to computations in Siegel gauge, where each Schwinger parameter is a true modulus of the

Riemann surface. In linear b-gauges there are two Schwinger parameters and one BRST in-

sertion for each modulus. It would be interesting to define, without using string field theory,

string amplitudes of the structure suggested by perturbation theory in linear b-gauges.
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